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Abstract

This paper presents a two-period model of stablecoin runs with endogenous con-
sumer adoption and seller acceptance decisions. It identifies two mechanisms that
rationalize regulatory concern about excessive stablecoin adoption: (i) a run external-
ity, whereby broader adoption increases the flightiness of stablecoin holders, raising
run risk; and (ii) uninternalized network effects, through which sellers’ multi-homing
choices erode the transaction value of bank deposits. By endogenizing the liability
structure of the stablecoin issuer and linking adoption dynamics to issuer fragility, the
model yields novel testable implications and a theoretical foundation for regulatory
intervention. More broadly, the paper highlights how fragility can emerge endoge-
nously from shifts in the composition of creditors–a mechanism that is also relevant
for other financial institutions vulnerable to runs. In the stablecoin context, stabilizing
forces such as conversion frictions, congestion effects, issuer revenues, and seigniorage
mitigate fragility, whereas moral hazard can increase fragility even under regulatory
disclosure requirements.
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1 Introduction

The rapid growth of stablecoins has led to increased regulatory attention globally. While
the U.S. GENIUS Act of July 2025 establishes comprehensive federal oversight for dollar-
pegged stablecoins, the European Central Bank is accelerating its digital euro project–with
an October 2025 "preparation phase" deadline–explicitly to counter the threat of harm to
the banking sector.1 This regulatory response reflects fundamental concerns about the
fragility of stablecoin issuers and the potential for excessive adoption of stablecoins–
precisely the issues addressed by this paper through a formal theoretical framework.

Stablecoins promise a stable value by pegging to fiat currencies,2 yet remain vulnera-
ble to runs triggered by concerns about reserve quality, custodial risk, operational risks
(e.g. cyber risk), or liquidity mismatches. Recent episodes underscore this fragility: Terra
USD’s spectacular collapse in May 2022 wiped out $40bn in value, while USDC’s tem-
porary depegging following Silicon Valley Bank’s failure in March 2023 demonstrated
how even fully-backed stablecoins are prone to fragility. With an October 2025 market
capitalization above $300bn, most of which concentrated in two dominant issuers (Figure
1), and the potential for a rapid expansion following the GENIUS Act, understanding the
determinants of stablecoin adoption and fragility has become critical for financial stability.

The goal of this paper is to examine the key determinants shaping stablecoin adoption
and fragility, and the feedback between the two. Stablecoins are modeled as a privately
issued instrument that aims to maintain a stable value by pegging one-to-one to the dollar,
while serving as a means of payment or store of value for both consumers and investors
across different use cases. The key research questions are: (i) how does the fragility of
a stablecoin arrangement depend on its acceptance by merchants and its adoption by
consumers (or investors) for different uses cases; (ii) under what conditions can stablecoin
adoption become excessive relative to other media of exchange; and (iii) how do payment
preferences, network effects, transaction costs, seigniorage, and issuer moral hazard prob-
lems influence fragility? To address these questions, I develop a two-period model with
two media of exchange—bank deposits and stablecoins—in which both seller acceptance
and consumer adoption are endogenous. While bank deposits are insured and perfectly
safe for simplicity, the stablecoin issuer is vulnerable to runs.

1See, e.g., keynote speech by Philip Lane on "The digital euro: maintaining the autonomy of the mone-
tary system" on 20 March 2025: https://www.ecb.europa.eu/press/key/date/2025/html/ecb.
sp250320_1~41c9459722.en.html.

2The dominant stablecoins are pegged one-to-one to the US dollar and reside on a blockchain. This
allows them to serve as a critical link between the rapidly evolving crypto universe and traditional financial
markets (Barthelemy, Gardin and Nguyen 2023; Kim 2022).
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Figure 1: End of month market capitalization over the period from Jan. 2020 to Aug. 2025,
when the total capitalization expanded from ca. $5bn to $275bn. Source: coingecko.com.

The fragility of the issuer is modeled as a global games run problem. The key innovation
is to model how heterogeneous payment preferences drive stablecoin demand, while
simultaneously affecting fragility. Global games have been used extensively to study
bank runs, currency attacks and debt runs (Carlsson and van Damme 1993; Vives 2005).
This class of models is well suited to studying stablecoin runs, because issuers operate a
unilateral exchange rate peg and share the same vulnerabilities as uninsured bank debt.

Compared to standard banking models, the heterogeneity in stablecoin use cases re-
quires allowing for heterogeneous payoffs in the global game (Sákovics and Steiner 2012).
While the liability structure is typically taken as given in a Diamond and Dybvig (1983)-
type model, where the bank chooses assets to trade off returns, liquidity provision and run
risk, my theory endogenizes the liability side by modeling adoption, where heterogeneous
consumers trade off the transaction benefits from stablecoins with the return differential
relative to insured bank deposits and the risk of devaluation.

The baseline model spans three dates (t = 0,1,2) and considers a stablecoin pegged to
a fiat currency. Two types of consumption-good sellers, deposit-native and stablecoin-
native, each sell a good to consumers at t = 2 and, by default, only accept their native
medium of exchange: insured bank deposits or stablecoins. At t = 0 sellers may multi-
home by incurring a cost to also accept the other money, and consumers decide whether
to hold stablecoins or deposits, forming expectations about seller acceptance profiles at
t = 2. This matters because consumers incur transaction costs if they don’t have the "right"
money that is accepted by the seller with whom they are randomly matched at t = 2.
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A key model feature is consumer heterogeneity, which is motivated by the observation
that crypto users are very diverse, and their demand for stablecoins is influenced by
preferences, such as a love for anonymity, the convenience relative to other mediums of
exchange and potential transaction-cost advantages for specific use cases such as crypto
investments, remittances and sanctions evasion, or currency substitution.3 Formally, this
diversity is captured by a heterogeneity in consumers’ matching probabilities with the
two types of consumption-good sellers. Conceptually, the goods sold by stablecoin-native
sellers can be viewed as shorthand for different stablecoin use cases–implying that the
two media of exchange compete across distinct transactional environments.

At t = 1 a run occurs if enough coin holders demand conversion into deposits, such
that the stablecoin issuer becomes insolvent. As standard in the global games literature,
coin holders receive a noisy private signal that is correlated with the issuer’s fundamental
before deciding whether or not to convert. The unobserved fundamental captures the
issuer’s profitability, which may be affected by an adverse shock to the quality of the
assets backing the stablecoins or by exposures to other risks, such as cyber risk.

There exists a unique monotone equilibrium of the conversion game where coin holders
optimally demand conversion at the interim date whenever they receive a private signal
that is below a certain threshold, suggesting an unfavorable fundamental realization. I
analyze how this signal threshold and, hence, the probability of runs depends on various
factors that play an important role in the market for stablecoins. Moreover, I take the effect
on the optimal stablecoin adoption decisions at the initial date into account.

The main result of this paper is to identify two mechanisms that can justify regulator’s
concern about excessive stablecoin adoption. First, there is a run externality because new
coin holders display less enthusiasm towards stablecoins than early adopters (e.g. "crypto
enthusiasts"). The marginal stablecoin adopter does not internalize that a wider adoption
at t = 0 is associated with a destabilizing composition effect, i.e. an increase in the flight-
iness of coin holders at t = 1 and higher issuer fragility. Second, the marginal adopter
does not internalize network effects, which arise if consumption-good sellers have a costly
multi-homing choice at the beginning of the game. Specifically, an anticipated increase
in stablecoin adoption by consumers can shifts sellers’ acceptance away from bank de-
posits. This undermines deposits’ transaction value, creating an uninternalized erosion of
bank deposits. From a policy perspective, this mechanism formalizes regulatory concerns

3Remittances and currency substitution in unstable economies are key growth areas for stablecoins Jhanji
et al. (2025). In 2022 the Coinbase crytocurrency exchange platform began offering crypto remittances to
Mexico. The new service allows to instantly send crypto assets and stablecoins, promising 25-50% lower
transaction costs when compared to traditional cross-border transactions.
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surrounding the "Facebook Libra" episode, where authorities cautioned about the poten-
tial for rapid, widespread stablecoin adoption leading to a reduced role of banks in the
payments market with implications for bank profitability and deposit intermediation.

Moreover, I find that most factors that increase the attractiveness of stablecoins also
reduce their fragility. Intuitively, factors that promote stablecoin adoption also tend to
make the marginal coin holder, who is indifferent between keeping her stablecoins and
demanding conversion at the interim date, less flighty. This is the case for an increase
in the likelihood that stablecoins are accepted by sellers. A higher adoption, in turn,
can reduce fragility if fixed operating costs can be spread across a larger user base and
if there are positive network effects that promote the use of stablecoins as a medium of
exchange. However, in the absence of such factors, higher stablecoin adoption increases
the likelihood of runs due to the destabilizing run externality described above.

Also factors that increase issuer revenue from fees and seigniorage promote stability,
as do congestion effects that are associated with an increase in transaction costs during
times of stress–a common feature of crypto networks based on decentralized ledger tech-
nologies.4 Perhaps surprisingly, the stabilizing effect of endogenous transaction costs can
reduce runs even when those endogenous costs remain below the exogenous transaction
costs in the baseline model over a wide range of aggregate conversion demands.

The model yields concrete regulatory implications. First, a Pigouvian adoption levy can
internalize the run externality that leads to excessive adoption and fragility. Second, a
Pigouvian adoption levy or acceptance-side instruments such as targeted subsidies for seller
multi-homing, can correct unpriced network effects that erode the transactional value
of bank deposits. Third, preserving market-based congestion pricing during stress (and
even embedding automatic conversion fee surcharges) helps to stem against runs. Fourth,
when extending the model by introducing a portfolio choice problem for the stablecoin
issuer, disclosure alone cannot align portfolio risk with the social optimum, highlighting
the need for binding reserve-quality requirements and capital buffers. Finally, narrow-bank
designs with access to liquidity backstops can eliminate panic-based equilibria altogether.

This paper connects to, and departs from, three strands of literature: (i) models of
two-sided currency competition with flexible exchange rates Schilling and Uhlig (2019);
Arifovic et al. (2025), (ii) models of peg stabilization for stablecoins Routledge and Zetlin-
Jones (2021), and (iii) models of currency attacks Morris and Shin (1998); Corsetti et al.
(2004) and bank runs Rochet and Vives (2004); Goldstein and Pauzner (2005) using the

4Due to capacity limits on the Ethereum blockchain, on-chain transactions fees are positively associated
with trading volumes. The run against Terra USD in May 2022 is a case in point, when the Ethereum gas
price quadrupled (see Figure A1 in the Appendix), which may have contributed to stabilizing Tether’s peg.
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global-games approach. Unlike the flexible-price models in (i), where shifts in currency
adoption are equilibrated by movements in the floating exchange rate, I study a money
claim (a stablecoin) that is redeemable on demand at par into a reference asset (e.g., bank
deposits) and, therefore, vulnerable to redemption runs when coin holders seek conver-
sion. The key contribution relative to (ii) and (iii) is to jointly endogenize seller acceptance
and heterogeneous consumer adoption, making the issuer’s liability composition an equi-
librium object. Sellers’ acceptance choices determine matching probabilities across media
of exchange, shaping the composition of adopters and thus the run threshold. This mech-
anism generates a novel run externality: wider adoption brings in flightier coin holders,
raising fragility even if asset risk is unchanged.

This aspect differentiates my paper from a complementary research on stablecoin ar-
rangements and instability that emphasizes asset-side mechanisms and market design.
Motivated by the fall of the Bank of Amsterdam, Bolt et al. (2024) show that a decline in
the service value of fiat can heighten vulnerability to adverse fundamentals and insuffi-
cient central bank capitalization. Gorton et al. (2025) rationalize how stablecoin lending
can drive demand, Ahmed et al. (2023) study theoretically and empirically the ambiguous
role of transparency; and Ma et al. (2025) analyze how centralized arbitrage affects run
risk and secondary-market dislocations in a global-games framework. In other related
work, Uhlig (2022) offers a theory that generates a gradual unfolding of the LUNA and
UST crash, as well as a quantitative interpretation. Li and Mayer (2022) build a dynamic
model of stablecoin and crypto shadow banking that features an instability trap with token
debasement when reserves are low. Finally, d’Avernas et al. (2022) explore the use of smart
contracts to enforce pre-determined rules that prevent over-issuance, and Klages-Mundt
and Minca (2021) study alternative stabilization mechanisms.

My paper also relates to the literature on digital money, crypto assets and central bank
digital currencies (CBDC). Agur et al. (2022) study optimal CBDC design with an emphasis
on network effects and the convenience of different means of payment; two aspects that
also feature in my paper. Adoption also plays an important role for e-commerce platforms
such as Alibaba. Chiu and Wong (2022) study the business model of platforms, who have
the choice between accepting cash and issuing digital money, and whether to allow the
digital money they issue to circulate outside the platform. Cong et al. (2021) study how
user network externalities shape crypto asset adoption and prices. Ahnert et al. (2022)
analyze the choice of using CBDC for payments with a view on privacy. Addressing a
disintermediation concern related to CBDC, Andolfatto (2021a) and Chiu et al. (2023) argue
that CBDC does not lead to disintermediation and can increase banking competition.5

5Other papers on disintermediation and bank stability include Whited et al. (2022), Barrdear and Kumhof
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The paper is organized as follows. The environment is described in Section 2. Section
3 solves the model, followed by a policy analysis in Section 4. Section 5 discusses several
extensions and additional insights for risk assessment. Section 6 presents novel testable
implications and offers pathways to bring them to the data. Finally, Section 7 concludes.
All proofs are in the Appendix and additional material is in an Online Appendix.

2 Environment

Consider a game with three dates (t = 0,1,2) comprising a stablecoin adoption game played
at t = 0 and a stablecoin conversion (or withdrawal) game played at t = 1, followed by
consumption at t = 2. The economy features a unit continuum of risk-neutral consumers,
a monopolistic stablecoin issuer, and a unit mass of competitive sellers. Consumers can
hold either insured bank deposits or stablecoins to transfer value across time.

Endowments and production. Each consumer is endowed with $1 in bank deposits at
t = 0. Sellers operate a constant returns to scale technology that allows them to produce
up to one unit of a divisible good at t = 2, which they sell at a normalized price of $1.6

Bank deposits and stablecoins. Deposits yield a risk-free return rD ≥ 0 when held from
t = 0 to t = 2 and earn no interest otherwise. Stablecoins are pegged 1-to-1 to the dollar
but may devalue due to issuer fragility. Specifically, the stablecoin issuer offers a 1-to-1
conversion at t = 0,1,2 but invests reserves in a risky asset yielding θ ∼ U [θ ,θ ] at t = 2
or r ≤ θ if liquidated at t = 1 with 0 ≤ θ < 1 ≤ θ and E[θ ] > 1. Moreover, a bankruptcy
cost ψ > 0 applies if reserves fall short of her t = 2 payment obligations. Therefore, coin
holders face the risk of devaluation ex-post, creating strategic incentives to redeem early.

Seller acceptance decisions at t = 0. At the beginning of the game sellers choose which
monies they accept for payment at t = 2. A fraction 0 < λ < 1 of sellers are type-B (bank
deposit-native) and the rest (1−λ ) are type-S (stablecoin-native). Each seller is assumed
to match with one consumer at t = 2. Sellers of each type may choose to add the non-native
medium of exchange (multi-home) at a cost to increase their reach.

When deciding whether or not to multi-home, sellers compare the expected utility
benefit u> 0, which accrues when matched with a consumer who has the "right" money on
hand, with a heterogeneous fixed cost of accepting another money for payment at t = 2. Let

(2021), Davoodalhosseini (2021), Schilling et al. (2021), Keister and Monnet (2020) and Williamson (2021).
6Production costs are paid in fiat currency at t = 2, consistent with the fact that most goods in crypto

markets are effectively priced in dollars and productive inputs are priced in fiat currency.
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the heterogeneous costs be given by δ B
j ∼U [δ B,δ

B
] and δ S

j ∼U [δ S,δ
S
] for type-B and type-

S sellers, respectively, with δ
B
,δ

S ≥ u ≥ δ
B,δ S ≥ 0. These costs capture the idiosyncratic

burden of establishing compatibility with an additional medium of exchange, such as the
effort or technological investment required to process stablecoin or deposit payments, and
generate well-defined cutoff rules that determine an endogenous seller-acceptance profile.

Let N ∈ [0,1] be the rate of stablecoin adoption determined by consumers in the second
stage of t = 0, i.e. the fraction of consumers who decide to convert their endowment of $1
in bank deposits to stablecoins. For a given belief about N, solving the sellers’ problem,
the fractions of type-B/type-S sellers who multi-home (i.e. choose to accept both monies),
f B,M and f S,M, and the fractions of sellers who single-home, f B and f S, can be derived as:

f B,M(N) = max{0, uN−δ
B

δ
B−δ

B } f B(N) = 1− f B,M(N) (1)

f S,M(N) = max{0, u(1−N)−δ
S

δ
S−δ

S
} f S(N) = 1− f S,M(N). (2)

Given seller acceptance profiles, the total acceptance rates for deposits and stablecoins are:

B(N) = λ +(1−λ ) f S,M(N), S(N) = (1−λ )+λ f B,M(N).

Consumer heterogeneity and matching. Consumers belong to groups g ∈ {1, ...,G} of
mass mg, with ∑g mg = 1. Each group is characterized by a group-specific routing weight
ωg ∈ [0,1] indicating the likelihood of being matched with a deposit-native (type-B) seller,
with ∑g mgωg = λ . Let the matching probabilities depend on these routing weights and
on the seller-side acceptance profiles from Equations (1) and (2), as follows:7

pB,g(N) = ωg︸︷︷︸
prob. to match

with type-B

+(1−ωg) f S,M(N)︸ ︷︷ ︸
prob. to match with
multi-homing type-S

, pS,g(N) = ωg f B,M(N)︸ ︷︷ ︸
prob. to match with
multi-homing type B

+ (1−ωg)︸ ︷︷ ︸
prob. to match

with type S

. (3)

Here pB,g(N) and pS,g(N) denote, respectively, the probabilities that a group g consumer
meets a seller who accepts deposits or stablecoins. We assume that ωg is decreasing in g,
meaning that groups with higher g have a lower (higher) probability to meet a seller accept-
ing bank deposits (stablecoins), as illustrated in Figure 2. Note that pB,g(N), pS,g(N) ∈ [0,1]
and pB,g(N)+ pS,g(N)≥ 1, where the inequality is strict whenever some sellers multi-home,
implying overlapping payment acceptance. By construction, the group-weighted averages

7This setting resembles directed search (Burdett and Wright 1997; Burdett and Wright 2001). Think of
deposits and stablecoins as two sub-markets. Sellers choose which rail to accept (and may pay a cost to
multi-home), while consumers direct their search according to their preference ωg.
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match aggregate seller-side acceptance rates: ∑g mg pB,g(N) = B(N), ∑g mg pS,g(N) = S(N).8

(a) Seller acceptance

N

Seller acceptance rate

0 1
0

1 S(N)

B(N)
1−λ

λ

Deposit-native sellers
multi-home more as
N rises (d f B,M/dN > 0)

Stablecoin-native
sellers multi-home

less as N rises
(d f S,M/dN < 0)

(b) Matching and heterogeneity

g

Matching probability

0

1

1 2 3 4 5

pB,g(N) pS,g(N)

Figure 2: Panel (a) shows the downward sloping total seller acceptance of deposits, B(N),
and the upward sloping acceptance of stablecoins, S(N), as a function of N. Linearity
in N follows from the uniform distribution of seller multi-homing costs and the upper
bound on u. Panel (b) depicts the matching probabilities, pB,g(N) and pS,g(N), and their
dependency on group-specific preference/routing weights. Consumers belonging to
a more stablecoin-oriented group, i.e. group with a higher g, have a higher (lower)
probability to be matched with a seller accepting stablecoins (deposits).

Transaction costs. Consumers face fixed conversion costs τt when exchanging between
the two monies at t ∈ {0,1,2}. A key model assumption is that there is an advantage to
having the "right" money on hand at t = 2, i.e., the cost of converting from one money to
another at short notice is higher than the cost of an ex-ante conversion at t = 0. To capture
this idea, we normalize τ0 = 0 and assume τ1 > 0, τ2 > 0. Economically, τ1 captures interim
conversion frictions (such as fees or delays), while τ2 captures point-of-sale frictions at t = 2
if a consumer meets a seller that does not accept the money she holds and must convert
on the spot. Holding the "right" money avoids paying τ2.9

Stablecoin adoption game in the second stage of t = 0. After seller acceptance profiles
are observed, consumers choose whether to hold deposits or convert and adopt stable-
coins. Let a0,i ∈ {0,1} be the choice of consumer i, where a0,i = 1 denotes adoption. The

8Intuitively, each group g consumer faces a lottery over seller types with weights ωg and 1−ωg; within
each type, only a fraction multi-home as captured by f B,M(N) and f S,M(N). Hence the matching probabilities
in Equation (3) are convex combinations of seller acceptance rates, weighted by how often each consumer
group encounters different seller types.

9Recall that all coins issued during the game are redeemed and exchanged for their equivalent $ value
at t = 2. Unlike consumers, sellers are not facing a transaction cost to exchange coins. Note that the seller-
side utility benefit u could be interpreted as the benefit from avoiding frictions that arise from meeting a
consumer who has the "wrong" money on hand (or, equivalently, as a reduced dis-utility from mismatches).
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combination of transaction costs and heterogeneous matching probabilities lead to an en-
dogenous segmentation: consumers belonging to a more crypto-oriented group (such as
consumers belonging to group 5 in Figure 2) are more likely to adopt stablecoins.

Stablecoin conversion game at t = 1. At the interim date, each stablecoin holder becomes
active with probability κ or passive otherwise. Active holders receive noisy private signals
correlated to the issuer’s fundamental, xi = θ + εi with εi ∼U [− ϵ,ϵ], and decide whether
to convert early (or run), while passive holders are dormant till t = 2.10 As common in the
global games literature I consider the case of vanish private noise, ϵ→ 0, to simplify the
analysis. Let a1,i ∈ {0,1} denote the choice at t = 1, where a1,i = 1 denotes early conversion.

Table A1 in Appendix A.1 summarizes the sequence of events. Two remarks highlight
how the environment departs from standard bank-run or currency-attack models. First,
an ex-ante adoption game and endogenous seller acceptance jointly link payments usage
to fragility: anticipated consumer adoption shifts sellers’ multi-homing, which in turn
alters matching probabilities and the exposure of coin holders at the conversion (or run)
stage. Second, heterogeneity across consumer groups matters because it creates group-
specific adoption and t = 1 conversion incentives. A necessary condition for a positive
stablecoin demand is that the most stablecoin-oriented consumers find adoption privately
optimal–i.e., their expected savings from avoiding point-of-sale transaction costs exceed
both the deposit interest advantage and the expected loss from a potential devaluation.

3 Solving the Model

The model is solved by backward induction and unfolds in three stages: (i) in the first stage
of t = 0 sellers decide which monies to accept, (ii) in the second stage of t = 0 consumers
decide whether to adopt stablecoins, taking seller acceptance as given, and (iii) in the third
stage a stablecoin run game takes place at t = 1, triggered by noisy information about the
issuer’s solvency. I develop the three building blocks in turn.

First, holding seller acceptance and the consumer adoption rate N fixed, Section 3.1
analyzes the run game at t = 1, which follows the structure of a global game of regime
change with incomplete information about the fundamental of the stablecoin issuer Morris
and Shin (1998); Vives (2005). The key innovation is the introduction of an endogenous
heterogeneity in expected redemption values across consumers, which is induced by the
group-specific matching probabilities pB,g(N) and pS,g(N). This payoff heterogeneity links

10As will become clear below, the introduction of passive coin holders is used to simplify the analysis
(without affecting the key insights) by ruling out the possibility of rationing at t = 1, as in Chen et al. (2010).

9



individual adoption choices to systemic fragility. Building on Sákovics and Steiner (2012),
I characterize the equilibrium run threshold θ ∗ as a function of N.

The determinants of fragility, including the relationship between the probability of
runs threshold and stablecoin adoption, are studied in Section 3.2. Thereafter, Section 3.3
analyzes the decisions made at t = 0. First, sellers choose whether to accept one or both
monies, taking expectations about future stablecoin adoption, N∗, and group-specific
matching probabilities, pB,g(N∗) and pS,g(N∗), into account. Given the resulting seller
acceptance profile, consumers then choose whether to adopt stablecoins, forming rational
expectations about a future devaluation, i.e the run threshold, θ ∗. A perfect Bayesian
equilibrium of the full game consists of: seller acceptance strategies, consumer adoption
decisions, and a run threshold at t = 1 that are mutually consistent.

3.1 Stablecoin Runs at t = 1

This section analyzes the continuation equilibrium at t = 1: active coin holders receive a
private signal about fundamentals and play a global-game style conversion game. First,
I define the issuer’s solvency condition. Thereafter, I state the payoff matrix and discuss
how the group-specific expected payoff of an active coin holder depends on her conversion
decision, the decision of other coin holders, and the solvency of the issuer. Building on
these results, I formulate the t = 1 decision problem and solve the conversion game.

Solvency and critical demand. The stablecoin issuer is insolvent whenever she cannot
redeem all outstanding stablecoins at par, that is when her available resources fall short
of the one-to-one redemption promise. Let A =

∫
i a1,i di/(κN) denote the fraction of active

coin holders who demand early conversion at t = 1, where a1,i = 1 indicates conversion
and N is the aggregate adoption rate. Cash-flow solvency at t = 1 is ensured by r ≥ κA.
Solvency at t = 2 requires that retained reserves cover remaining claims:

(r−κA)
θ

r
≥ 1−κA, (4)

Rearranging yields the critical conversion share at t = 1:

Â(θ ) ≡ (θ −1)r
κ(θ − r)

∈ [0,1],∀θ ∈ [θℓ,θh], (5)
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so that the issuer is insolvent iff A > Â(θ ).11 To rule out rationing at t = 1, I impose the
parameter restriction r > κ (see Assumption 1 below). This ensures that all active coin
holders can be paid at t = 1 whenever the issuer is solvent.12

Payoffs. The risk of insolvency only affects stablecoin holders, as bank deposits are
insured. When deciding whether to demand conversion of her stablecoins to bank deposits
at t = 1, each active coin holder i compares the expected utility payoff from doing so with
the alternative to keep her coins. Table 1 shows the expected payoffs of coin holder i

associated with the two actions, which depend on the realized θ , on the aggregate action
A and on expected transaction costs governed by group-specific matching probabilities.

aggregate action

individual action

A ≤ Â(θ )

issuer is solvent

A > Â(θ )

issuer is insolvent

Demand conversion, a1,i = 1 1− τ1 − (1− pB,gi)τ2 1− τ1 − (1− pB,gi)τ2

Keep coins, a1,i = 0 1− (1− pS,gi)τ2
(r−κA)θ /r−ψ

1−κA − (1− pS,gi)τ2

Table 1: Expected ex-post payoffs in the stablecoin conversion game at t = 1 for θ ∈ (θℓ,θh).

First, consider column 2 in Table 1 when the issuer is solvent, A ≤ Â(θ ), and can meet
her payment obligations in full to both active coin holders demanding conversion and to
the remaining active coin holders who keep their coins till t = 2, as well as to passive coin
holders. Thus, all coin holders demanding conversion receive 1−τ1 dollars worth of bank
deposits at t = 1, after accounting for the conversion cost. This allows them to purchase
1−τ1 units of the good if they are matched with a seller accepting deposits, and 1−τ1−τ2

units if they are matched with a seller only accepting stablecoins, which occurs with
probability 1− pB,gi . Taken together, the expected payoff is 1− τ1 − (1− pB,gi)τ2. Instead,
all active coin holders who keep their coins at t = 1 receive one unit of the consumption
good if they are matched with a seller accepting stablecoins and 1− τ2 units if they are
matched with a seller accepting only deposits, which occurs with probability (1− pS,gi).

Next, consider column 3 when the issuer is insolvent, A > Â(θ ). Now she is unable
to meet her payment obligations in full to the remaining active coin holders who keep
their coins till t = 2, as well as to passive coin holders, which both receive a share of the
remaining resources after bankruptcy costs. However, all active coin holders demanding

11Appendix A.4 characterizes the regions in which the issuer is fundamentally solvent or fundamentally
insolvent, as well as the intermediate range of fundamental realizations, θ ∈ (θℓ,θh), in which solvency depends
on the realized redemption demand A, as usual in global games.

12This assumption simplifies the analysis Chen et al. (2010) without affecting the key insights.
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conversion at t = 1 still receive the promised $1 per stablecoin and have the same utility
payoff as in the previous case. This is because the first inequality in (6) bounds κ from
above such that r > κ . Moreover, a bound on κ and an additional bound on the bankruptcy
cost ψ , that is κ ≤ κ and ψ ≤ θ , ensure that the payoffs of both the passive coin holders
and the remaining active coin holders are weakly positive, independent of A:

κ ≤ κ ≡ θ −ψ − τ2

θ − rτ2
r < r ⇒

r−κA
r θ −ψ

1−κA
− τ2 > 0 if ψ < θ ,∀A > Â(θ ),θ ∈ [θ ,θ ]. (6)

The two conditions are summarized in Assumption 1 below and simplify the analysis by
allowing to average over the group-specific terms when solving for the equilibrium by
applying the Belief Constraint of Sákovics and Steiner (2012), as shown below.13

Benefit from conversion. The optimal decision of coin holder i can be studied by analyz-
ing her relative payment preference, which is defined as ∆pi(N) ≡ pB,gi(N)− pS,gi(N). Coin
holder i’s differential payoff, or benefit, from demanding conversion at t = 1, instead of
keeping her coins can be written as ∆1,i(A;θ ) ≡ E[ui(A,a1,i = 1;θ )]−E[ui(A,a1,i = 0;θ )]:

∆1,i(A;θ ) =

∆pi(N)τ2 − τ1 if A ≤ Â(θ )

1+∆pi(N)τ2 − τ1 −
r−κA

r θ−ψ

1−κA if A > Â(θ ).
(7)

Observe that ∆1,i is weakly decreasing in θ . Moreover, ∆1,i is lower for coin holders
belonging to a group with a higher probability to be matched with a seller accepting
stablecoins, which, as will become clear below, implies a reduced flightiness.

Let ĝ∈ {1, ...,G} be the marginal group of coin holders, i.e. the group of consumers with
the lowest benefit from holding stablecoins. If A < Â(θ ), then ∆1,i < 0,∀gi ≥ ĝ. Otherwise,
consumer i belonging to group gi ∈ {ĝ, ...,G} would not have adopted stablecoins at t = 0.
Conversely, for A > Â(θ ) there is a global strategic complementarity in actions; a higher
A strictly increases the incentives to demand conversion. Thus, ∆1,i increases in A and
reaches its maximum value for A = 1, with ∆1,i(1;θ )> 0,∀θ ∈ (θℓ,θh),gi ∈ {ĝ, ...,G} under

13The implicit assumption is that the use of stablecoins as a means of payment at t = 2 is independent of
the solvency of the issuer. This assumption could, for instance, be rationalized because a new issuer enters
the market or by the ability of the insolvent issuer to continue operating under resolution with a full backing
by cash. The main insights do not hinge on this assumption and are robust to a relaxation of the upper
bound on κ , which generates a simplified payoff matrix and analysis of the run game as in Rochet and Vives
(2004). Importantly, the analysis of the case with G > 2 is facilitated by the fact that the group-specific terms
are not contingent on A (Sákovics and Steiner 2012). See Goldstein and Pauzner (2005) for a bank run model
with payoffs that do not satisfy global strategic complementarities, as it is the case when κ = 1.
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the sufficient condition that:

ψ > ψ ≡ (1−κ)(τ1 −∆pg(N)τ2). (8)

The admissible range for bankruptcy costs, ψ ∈ (ψ ,θ ), is non-empty as long as the
relative attractiveness of stablecoins is not excessively high for the most crypto-enthusiastic
users (group G), and the conversion cost τ1 is not prohibitively large. Formally, the lower
bound ψ derived in (8) ensures that even group G strictly prefers to convert at t = 1 when
they expect all other active coin holders to do the same (i.e., A = 1) and the fundamental
realization falls below the solvency threshold θh. As illustrated in Figure A3 in the
Appendix, the differential benefit ∆1,i is increasing in the aggregate conversion rate A: it
is negative when few convert, and becomes positive as conversion pressure builds.

Equilibrium of the Continuation Game at t = 1. Next, I derive the continuation equi-
librium of the incomplete information game, where coin holders receive a noisy private
signal at t = 1 that is correlated with the amount of resources available to the issuer at
t = 2. Building on the previous results, Assumption 1 summarizes the key parameter
conditions derived above, which I use for the subsequent analysis.

Assumption 1. Let κ < κ < r and ψ ∈ (ψ ,θ ).

The upper bound on κ simplifies the payoff structure and ensures global strategic
complementarity in actions (this assumption could be relaxed). The lower bound on ψ

focuses attention on the plausible case where even crypto enthusiasts have a benefit from
demanding conversion if they know that everybody else wants to convert and θ < θh,
while the upper bound on ψ avoids negative payoffs (this assumption could be relaxed).

I use the global games approach (Vives 2005; Morris and Shin 2006) to analyze the
conversion game and to obtain conditions for the existence of a monotone Bayesian equi-
librium. In Appendix Section A.6 I derive coin holders’ posterior belief conditional on
their private signal xi and group gi. Based on coin holders’ posterior beliefs, Appendix
Section A.7 then establishes an upper and lower dominance region of very favorable and
very unfavorable private signal realizations, respectively, such that the actions of coin
holders observing a signal that falls in these regions do not depend on the decisions of
others. For the general case with multiple groups of coin holders, i.e. ĝ < G, the existence
of unique equilibrium threshold strategies can be established by adapting the translation
argument of Frankel et al. (2003), which has also been used by Garcia and Panetti (2022) to
study a Diamond-Dybvig bank run model with wealth heterogeneity across households.

After establishing existence and uniqueness, I characterize in Proposition 1 a monotone
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equilibrium of the continuation game by application of the Belief Constraint of Sákovics
and Steiner (2012). The equilibrium is fully determined by a critical mass condition and
by one indifference conditions for each coin holder group, which are derived in Appendix
A.8 and A.9, respectively, and used to back out the equilibrium run threshold θ ∗.

Proposition 1. Given Assumption 1, take a positive level of stablecoin adoption N > 0. Then there
exists a unique monotone equilibrium of the conversion game characterized by threshold strategies
where active stablecoin holders in groups g ∈ {ĝ, ..,G} demand conversion if and only if they receive
a private signal that is below their group-specific signal threshold, i.e. for xi ≤ x∗gi

, and where the
issuer faces a run at t = 1 for all θ < θ ∗, with θ ∗ ∈ (1,θh) given by:

I(θ ∗;N) ≡ ∆p(N)τ2 − τ1 +
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1− (r−κA)θ ∗/r−ψ

1−κA

)
dA = 0 (9)

∆p(N) ≡
µĝmĝ[pB,ĝ(N)− pS,ĝ(N)]+∑

G
g=ĝ+1 mg[pB,g(N)− pS,g(N)]

µĝmĝ +∑
G
g=ĝ+1 mg

, (10)

where ĝ solves N = µĝmĝ +∑
G
g=ĝ+1 mg, with µĝ ∈ (0,1].

Proof. See Appendix Section A.10.1.

The Belief Constraint states that the Laplacian Property holds on average across the
different groups of consumers adopting stablecoins, meaning that coin holders’ posterior
distribution of A is on average uniform over [0,1]. This property allows to derive a tractable
solution where the equilibrium fundamental threshold is determined by averaging over
the indifference conditions (weighted by their group shares), as in Equation (9).14 As a
result, for a given N, θ ∗ is a convenient function of the weighted average of group-specific
matching probabilities, ∆p(N) ≡ E[∆pg(N) | adopters at N], a summary statistic for the
average relative payment preference for deposits in the population of adopters.

3.2 Determinants of Fragility

The t = 1 continuation equilibrium described in Equation (9) can be characterized by
application of the implicit function theorem (IFT). This allows to uncover the determinants
of fragility. The results are summarized in Proposition 2.

14Critically, the application of the Belief Constraint requires that the group-specific terms in the indiffer-
ence condition are not a function of the aggregate action. This is because the Laplacian property does not
hold for the threshold type of a group, but it only holds when averaging across groups. However, the main
results can be generalized in a less tractable model with κ = 1 and two groups of coin holders, leading to a
dependence of αg and βg on A, and when transaction costs are proportional to the amounts converted.
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Proposition 2. The probability of stablecoin runs, Prob{θ < θ ∗}, derived in Proposition 1 depends
on the model parameters as shown in Table 2.

Increase in Probability of a run
Bankruptcy cost, ψ ↑
Fraction of active coin holders, κ ↑
Liquidation value, r ↓
Conversion cost, τ1 ↓
Average relative preference
for deposits payments, ∆p ↑

Table 2: Comparative statics

Proof. See Appendix Section A.10.2.

The first three comparative static results in Proposition 2 are consistent with well-
known findings in the banking literature and give confidence that the proposed model for
stablecoins is sensible. Intuitively, an increase in bankruptcy costs and a decrease in the
liquidation value r make the issuer less resilient. Consequently, the issuer faces a higher
probability of runs. Similarly, a higher share of active coin holders is destabilizing.

The fourth result states that higher conversion costs have a stabilizing effect. This is
because they reduce the incentives to demand conversion. Due to the importance of
congestion effects in crypto markets, the stabilizing role of transaction costs appears to be
a relevant feature, as a large volume of transactions in a short time window can trigger
significant increases in transaction fees. To speak to this phenomenon, I endogenize the
conversion cost τ1 in Section 5.1 and show that its stabilizing effect is strengthened.15

The fifth comparative static result in Table 2 highlights a novel composition effect, which
the main focus of this section. I find that the run probability is increasing in the average
induced relative payment preference for deposits among the population of coin holders,
as captured by the term ∆p, as defined in (10). This difference reflects how frequently users
expect to encounter sellers who accept deposits versus stablecoins. Formally, when the
average matching probability with a seller accepting stablecoins, pS,g(N), is high relative
to the one with a seller accepting deposits, pB,g(N), then stablecoins have a stronger
transactional value (∆p is smaller), making their holders less inclined to redeem early.

Building on the composition effect via changes in ∆p, I can analyze how adoption
and other drivers of coin holder heterogeneity shape fragility. Figure 3 illustrates the

15I document such an event in Figure A1 in the Appendix for the period around the devaluation of USD
Terra in May 2022, when the transaction fees for on-chain transactions on the Ethereum network (which was
the dominant network used by USD Terra) shot up more than four-fold, which may have helped to reduce
outflows from Tether, counteracting contagion effects across stablecoins.
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causal chains for the stabilizing effect of a higher seller acceptance of stablecoins and for
the destabilizing effect of a higher adoption rate for fixed seller acceptance. These effects
provide the foundation for Section 4, which studies how policy interventions can influence
the adoption–fragility nexus by shaping seller acceptance and coin holder composition.

For fixed adoption rate N;
seller acceptance S(N) ↑

Higher probability that seller
accepts stablecoins, pS,g ↑

Relative preference for de-
posits goes down, ∆pg ↓

Run threshold θ ∗ ↓ (runs less likely)

Stabilizing Effect (Corollary 4)

For a given seller acceptance pro-
file B(N),S(N); adoption N ↑

Marginal adopter becomes less enthusiastic

Relative preference for deposits goes up, ∆pg ↑

Run threshold θ ∗ ↑ (runs more likely)

Destabilizing Effect (Corollary 5)

Figure 3: Two causal chains linking adoption, seller acceptance, and fragility. The formal
results for the two effects are in Appendix Section A.10.3 as corollaries to Proposition 2.

In practice, stablecoin use cases vary significantly in terms of the potential benefits
they offer to holders. This has important implications for the fragility of a stablecoin
issuer. For example, retail users may hold stablecoins primarily to explore the broader
crypto ecosystem or to leverage the technology for low-cost cross-border remittances.
Their relative preference for stablecoins likely differs from that of actors seeking to evade
sanctions or to facilitate payments for illicit activities, who belong to a group of crypto
enthusiast (i.e. a group with a high level of g). Through the lens of the model, an increase
in the use for sanctions evasion could, e.g., be captured by a relative increase in the mass
of consumers who are crypto enthusiasts. Such changes manifest as a decrease in ∆p,
triggering a stabilizing effect which lowers θ ∗ as illustrated in the left panel of Figure 3.

Conversely, the same composition effect also has important implications for the rela-
tionship between adoption and fragility. As adoption widens, it may draw in consumers
from groups with weaker transactional motives for holding stablecoins, that is more con-
sumers from the marginal group of coin holders ĝ or even consumers from groups with
a lower g. Consequently, the average flightiness of the coin holder base increases, leading
to a destabilizing compositional effect, as illustrated in the right panel of Figure 3. This
destabilizing effect establishes a novel feedback channel of endogenous fragility for fixed
seller acceptance decisions: the widening of stablecoin adoption can destabilize the sys-
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tem when it alters the composition of users in a way that reduces the transactional value of
stablecoin holdings.16 From a practical perspective this effect is particularly salient when
the adoption of stablecoins spreads beyond the core of crypto-enthusiastic early adopters,
e.g. for new use cases or by user segments that differ markedly from the initial user base.

3.3 Stablecoin Adoption Game and Seller Decisions at t = 0

Also within the initial period, the model is solved backwards. I start with the second
stage where consumers decide whether to adopt stablecoins, before moving to the first
stage where sellers decide which monies to accept. The expected differential payoff,
∆0,i(A;θ ) ≡ E[ui(a0,i = 1;N,θ ∗(N))]−E[ui(a0,i = 0;N,θ ∗(N))], of consumer i in group gi

from adopting stablecoins instead of bank deposits at t = 0 if she expects an adoption rate
N, matching probabilities pB,gi(N), pS,gi(N) and believes that all active coin holders behave
optimally at t = 1, where x∗gi

= θ ∗(N) solves Equation (9), is:

∆0,i(N) ≡
∫

θ∗

θ

(
κ(1− τ1 − (1− pB,gi)τ2)+ (1−κ)

( r−κ

r θ −ψ

1−κ
− (1− pS,gi)(N)τ2

))
dθ

θ −θ

+
∫

θ

θ∗
(1− (1− pS,gi)τ2)

dθ

θ −θ
− (1+ rD − (1− pB,gi)(N)τ2).(11)

Equation (11) builds on the payoffs from Table 1 and the results from Proposition 1. The
risk of insolvency only affects stablecoins, as deposits are insured. For vanishing private
signal noise, there is zero probability mass on fundamental realizations that correspond
to a partial run, meaning that A = 1 for θ < θ ∗ and A = 0 for θ > θ ∗. Then, for a given N,
pB,g(N), pS,g(N) and θ ∗(N), the optimal adoption decision of consumer i is:

a∗0,i(N) =


1 if ∆0,i(N) > 0

∈ [0,1] if ∆0,i(N) = 0

0 otherwise.

(12)

Next, I consider the problem of a seller who accepts one or both monies, taking expec-
tations about future stablecoin adoption by consumers, N∗, and group-specific matching
probabilities, pB,g(N∗) and pS,g(N∗), into account. Let aB,M

j ∈ {0,1} (aS,M
j ∈ {0,1}) denote

the choice of seller j of deposit-native type-B (stablecoins-native type-S), where aB,M
j = 1

16With endogenous seller acceptance decisions there is, however, a countervailing effect in that higher
expected stablecoin adoption by consumers is associated with higher benefits for deposit-native type-B
sellers to also accept stabelcoins, which leads to an decrease in ∆p(N). I will revisit this aspect in Section 4,
where adoption and fragility are analyzed jointly in the face of changes in seller acceptance.
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(aS,M
j = 1 ) if she decides to also accept stablecoins (bank deposits). Then the respective

problems of type-B and type-S sellers are:

max
aB,M

j ∈{0,1}

(
(1−aB,M

j )u(1−N∗)+ aB,M
j (u−δ

B
j )
)

max
aS,M

j ∈{0,1}

(
(1−aS,M

j )uN∗+ aS,M
j (u−δ

S
j )
)

.

Solving for the optimal acceptance decisions gives:

aB,M∗
j (N∗) =

1 if uN∗ > δ B
j

0 otherwise
aS,M∗

j (N∗) =

1 if u(1−N∗) > δ S
j

0 otherwise,
(13)

which yields f B,M(N∗) and f S,M(N∗) in Equations (1) and (2).
Based on the description of the seller and consumer problems at t = 1 and of the

problem of coin holders at t = 1, I can now define a Perfect Bayesian Equilibrium (PBE).

Definition 1. Perfect Bayesian Equilibrium A (pure-strategy) PBE consists of: (i) seller
acceptance decisions {aB,M∗

j ,aS,M∗
j : j ∈ [0,1]}, (ii) consumer adoption decisions {a∗0,gi

: i ∈ [0,1]},
(iii) an adoption rate N∗, (iv) conversion strategies {a∗1,gi

(xgi;N) : i ∈ [0,1]}, and (v) a system of
beliefs over future adoption N, matching probabilities, and fundamentals, such that:

(i) Each seller’s acceptance decisions aB,M∗
j and aS,M∗

j are optimal at t = 0, given beliefs about
future stablecoin adoption N∗.

(ii) Each consumer’s adoption decision a∗0,i is optimal at t = 0 as in (12), given N∗, pB,gi(N
∗)

and pS,gi(N
∗), where ∆0,gi(N

∗) uses the matching probabilities in (iii).

(iii) The adoption rate is consistent with individual decisions, N∗ =
∫ 1

0 a∗0,i di, and the matching
probabilities pB,g(N∗), pS,g(N∗) in (3) are consistent with seller decisions for all g∈ {1, ...,G}.

(iv) Active coin holders act optimally at t = 1 and the run threshold θ ∗(N∗) solves (9).

(v) Beliefs are Bayes-consistent on- and off-path.

(a) Given N∗ and the acceptance shares implied by (i), beliefs assign pS,g(N∗) and pB,g(N∗)

as in (iii) for all g ∈ {1, . . . ,G}.

(b) If an off-path adoption mass Ñ ̸= N∗ is observed, beliefs about matching probabilities
pS,g(Ñ) and pB,g(Ñ) update via the same mappings f B,M(Ñ) and f S,M(Ñ) used in (iii).
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Conditions (i)–(iv) ensure sequential rationality of acceptance, adoption, and conversion
at t ∈ {0,1} given beliefs over (future) adoption N and matching probabilities, while
condition (v) pins down Bayes-consistent beliefs over adoption and matching probabilities
on and off the equilibrium path.

I proceed by first discussing the beneficial role of stablecoins in Section 3.3.1 to highlight
the transaction role of money and the advantage of having the "right" money on hand at
t = 2. To do so, it is instructive to consider a version of the model where stablecoins
are riskless. Thereafter, Section 3.3.2 offers a joint analysis of stablecoin adoption and
acceptance for the model with stablecoin runs and studies the interaction between fragility
and the optimal stablecoin adoption and acceptance decisions.

3.3.1 Transaction Costs and the Beneficial Transaction Role of Stablecoins

Before turning to the joint equilibrium with adoption and runs, it is instructive to con-
sider two knife-edge benchmarks that clarify the transaction-cost channel and its limits,
especially the role of τ2, and the role of safe versus risky backing of stablecoins.

Case A (No Frictions). If τ2 ↘ 0 or if all sellers multi-home, i.e. f B,M = f S,M = 1, the
advantage from holding the "right" money on hand at t = 2 vanishes. Bank deposits
dominate and the unique equilibrium is N∗ = 0. Stablecoins have no transactional value,
either because consumers can always convert for free or because all sellers accept deposits.

Case B (Safe Stablecoins). If liquidation risk disappears (r,θ ↗ 1), stablecoins become
riskless. Then consumers with a sufficiently high probability of meeting a stablecoin-
accepting seller adopt in order to economize on τ2, while others hold deposits. This
captures an idealized benchmark of tightly regulated, fully backed stablecoins.

Proposition 3. (Safe stablecoins) Let r → θ and τ1/τ2 > pS,1(0)− pD,1(0), θ → 1, and suppose
type-S sellers rarely accept deposits, f S,M ≈ 0. Then a consumer i adopts stablecoins if and only if:

rD

τ2
< pS,gi − pB,gi , (14)

so that equilibrium adoption is positive if and only if Inequality (14) holds when evaluated at
gi = G. In this case there exists a unique marginal group of stablecoin adopters ĝ∗ ∈ {1, ..,G}.

Proof. See Appendix Section A.10.4.

Proposition 3 delivers a clear "payments-only" benchmark: adoption requires both a
positive transaction cost τ2 and the presence of sufficiently crypto-oriented consumers,
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i.e. at least the consumers in group G must find it optimal to adopt. Runs are absent,
and fragility arises only if liquidation risk is introduced. This benchmark best captures
an "ideal world" where stablecoins are tightly regulated, well capitalized and backed by
central bank reserves, while offering a technology-enabled access to certain use cases or
benefits for consumers that are otherwise unavailable.17 Notably an equilibrium with
stablecoin adoption only requires one group of coin holders, i.e. G = 1. Furthermore,
observe that optimal continuation at t = 1 entails keeping coins, so τ1 is never paid and
does not affect the adoption cutoff.

Moving away from this special case with safe stablecoins, the next section focuses on
the practically more relevant version of the model, where the issuer is susceptible to runs
due to her risky and illiquid investment. Moreover, I endogenous seller acceptance.

3.3.2 Equilibrium of Acceptance, Adoption and Runs

Adoption with Runs Under Fixed Acceptance. I first re-introduce fundamental risk
but seller acceptance is initially held fixed, i.e. (aB,M

j ,aS,M
j ) j∈[0,1] and the resulting accep-

tance profiles f B,M, f S,M are taken as given. Let {pB,g, pS,g}g be the matching probabilities
implied by this exogenous acceptance profile. Adoption is monotone in g: there ex-
ists a (belief–dependent) marginal group ĝ(N) ∈ {1, . . . ,G} such that consumers adopt iff
gi ≥ ĝ(N). Lemma 1 describes how optimal adoption varies with beliefs about fragility.

Lemma 1. (Fragility & Adoption) Fix sellers’ acceptance ( f B,M, f S,M) so that pB,g and pS,g are
constant in the adoption rate N. Under the conditions of Proposition 1, for any belief θ ′ ∈ [0,1]
about the probability of stablecoin runs, the adoption rate N is weakly decreasing in θ ′.

Recall from Corollary 5 and from the right panel of that Figure 3 that, for fixed seller
acceptance, higher adoption brings in more deposit-oriented users, which raises ∆pg(N),
and therefore increases the run threshold θ ∗(N). Combining Corollary 5 with Lemma 1
yields the feedback between adoption and fragility. In equilibrium, beliefs about θ ∗ at
t = 0 and the adoption outcome N∗ must be consistent with the θ ∗(N∗) solving the t = 1
conversion game given the composition of stablecoin holders at N∗, i.e. the implied ∆p.

Two–group Simplification. To sharpen intuition, I now restrict attention to case with
G = 2 and relegate the general case to the Online Appendix. Group 1 (deposit-oriented)
has mass m1 and group 2 (stablecoin-oriented) has mass m2, with m1 +m2 = 1. Adoption is

17In addition, the benchmark will serve as a basis for discussing in Section 5 regulated stablecoin issuers
(U.S. GENIUS Act) or e-money providers (European Markets in Crypto-Assets (MiCA)), narrow banks and
a hybrid CBDC through the lens of the model.
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monotone in type and can occur in blocks or via partial adoption of the marginal group.
If group 1 is indifferent at belief N, a unique fraction µ1 ∈ [0,1) adopts, pinned down by:

∆0,1 (N,θ ∗(N)) = 0 with N = m2 + µ1m1.

Because ∆0,2 and ∆0,1 are weakly decreasing in N under fixed acceptance (strict whenever
the adopter set expands to include any mass of group 1 through the composition channel),
the indifference condition delivers a unique µ1 whenever group 1 is marginal. Let Γc(N)

denote the aggregate adoption best-response at belief N. In the two–group case:

Γc(N) ∈
{

0, m2, m2 + µ1m1, 1
}

,

where the middle value appears only when group 1 is marginal. Off that point, the best-
response is block-adoption: 0, m2, or 1. Observe that Γc(1) = 1 iff ∆0,1 (1,θ ∗(1)) ≥ 0 and
Γc(0) = 0 iff ∆0,2 (0,θ ∗(0)) < 0. Proposition 4 summarizes.

Proposition 4. (Unique Adoption Equilibrium under Fixed Acceptance) Let G = 2. With
fixed acceptance, N = Γc(N) has a unique solution N∗ ∈ {0, m2, m2 + µ1m1, 1}, where the inter-
mediate value m2+µ1m1 arises only if group 1 is marginal (in which case µ is uniquely determined
by the indifference condition). Corner cases N∗ ∈ {0,1} occur when no group (all groups) adopt.

The key simplification in the two–group case is that Γc(N) reduces to a step-shaped
correspondence with one vertical segment. This makes the discussion of the structure and
characterization of the joint equilibrium with endogenous seller acceptance, consumer
adoption and runs more transparent (see the Online Appendix for the general case).

Adoption with Runs Under Endogenous Seller Acceptance. Next, I allow for endoge-
nous seller acceptance by type-S sellers who may decide to multi-home based on their
belief about N, i.e. f S,M(N) is now endogenous and decreasing in N as described in Equa-
tion (2), while f B,M is kept fixed (e.g., because δ

B → ∞, which makes the type-B seller
margin inelastic to changes in the sellers’ belief about N).

The main insight is that endogenous seller acceptance gives rise to a stabilizing network
effect: a higher expected N decreases type-S seller acceptance of bank deposits, which
reduces the fragility of the stablecoin issuer by lowering pB,g(N), while pS,g(N) stays fixed.
Importantly, this effect can locally overturn the destabilizing composition effect from Corollary
5, meaning that the run threshold decreases in N, thereby reshaping the aggregate adoption
best-response Γc(N). This happens precisely when d∆p/dN < 0. Lemma 2 summarizes.

Lemma 2. (Adoption & Fragility Revisited) Let G = 2 and δ
B → ∞ so that f B,M is fixed while
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f S,M(N) is decreasing in N. A broader adoption of stablecoins is stabilizing if the destabilizing
composition effect from new adopters from group 1 is dominated by positive network effects, i.e.:

dθ ∗

dN
< 0 iff d∆p

dN
< 0,

where:

d∆p
dN

=

≥0; destabilizing composition effect︷ ︸︸ ︷
dw1

dN
(∆p1 −∆p2) +

<0; stabilizing acceptance/network effect (d f S,M/dN<0)︷ ︸︸ ︷
w1

d∆p1

dN
+w2

d∆p2

dN
,

where wg(N) is the share of adopters in group g and ∆pg ≡ pB,1(N)− pS,1(N) so that:

dθ ∗

dN
=

< 0, if N ∈ [0,m2]

< 0, if N ∈ (m2,1) and
(

m2
N2 (∆p1 −∆p2)+

(
µ1m1

N (1−ω1)+
m2
N (1−ω2)

) d f S,M

dN

)
< 0.
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(b) Endogenous type-S acceptance

Figure 4: This figure shows the aggregate adoption best-response correspondence, Γc(N),
and the 45◦ line for the two-group case. Panel (a): step profile with a top plateau Γc=1 on
[0,N∗), a middle plateau Γc=[N∗,1], and the equilibrium at N∗ = m2 +µ1m1 on the vertical
wheree group 1 is marginal. Panel (b): upward sloping S-shaped best-response.

The illustrations in Figure 4 show the implications of Lemma 2 for the aggregate adop-
tion best-response. Panel (a) fixes acceptance. The aggregate adoption best-response is
weakly decreasing and has a unique intersection. Instead, with endogenous seller accep-
tance the best-response can bend upward if dθ ∗/dN < 0, creating multiple intersections.
The depiction in Panel (b) illustrates the case with a strong seller acceptance effect such
that the best-response bends upwards globally. Proposition 5 states the result formally.

Proposition 5. (Joint Equilibrium) Let G = 2 and δ
B → ∞ so that f B,M is fixed while f S,M(N)

is decreasing in N. There exists at least one adoption equilibrium N∗ ∈ [0,1]. If the seller
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acceptance/network effect dominates the destabilizing composition effect at least locally so that
dθ ∗/dN < 0 for some interval of adoption rates, Γc(N) can become S-shaped, yielding multiple
fixed points. Otherwise, the equilibrium remains unique.

The key take away from the analysis of the two-group case is that with fixed acceptance
there is a unique adoption equilibrium pinned down by the marginal group of adopters.
With endogenous seller acceptance the relative strength of the destabilizing composition
effect is key for equilibrium uniqueness. If overturned by strong seller acceptance/network
effects, equilibrium multiplicity emerges. The multi-group version follows the same logic
and the proof uses Kakutani’s fixed-point theorem to establish existence of a Perfect
Bayesian Equilibrium (see Online Appendix).

From a policy perspective the possible emergence of multiple equilibria indexed by
different beliefs about stablecoin adoption can be a concern, as sudden shifts in adoption
may have significant stability implications that may reverberate in financial markets, due
to the role of stablecoins as a link between the crypto universe and traditional financial
markets (Barthelemy et al., 2023; Kim, 2022). The model offers a series of deeper policy
implications that I discuss in Section 4.

4 Policy Analysis

Section 4.1 addresses regulatory concerns regarding a widespread, rapid, and from a
consumer welfare perspective "excessive" adoption of stablecoins. Specifically, it offers a
consumer welfare-centric socially optimal level of stablecoin adoption and the equilibrium
level of adoption resulting from privately optimal choices by consumer. Thereafter, Section
4.2 speaks to regulatory concerns about moral hazard and the disclosure of risks in the
context of endogenous stablecoin adoption through the lens of a modified model where
the issuer can select the portfolio risk.

4.1 Efficiency Analysis: Excessive Adoption

I study a constrained planner who maximizes consumer welfare by choosing the adoption
mass N ∈ [0,1] at t = 0, taking (i) the t = 1 conversion game and (ii) sellers’ acceptance best
responses as constraints. Section 4.1.1 analyzes the benchmark with fixed seller acceptance
to isolate the uninternalized destabilizing run externality, Section 4.1.2 then allows endogenous
type-S acceptance and analyzes an uninternalized erosion of the value of bank deposits through
network effects. Lastly, Section 4.1.3 discusses policies to implement the efficient allocation.
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Planner’s problem. Adopting a consumer welfare criterion, the efficiency analysis builds
on a suitable constrained planner benchmark with fixed seller acceptance where a planner
maximizes consumer welfare, WC(N), by choosing the adoption mass N ∈ [0,1] at t = 0
but must (i) take the t = 1 conversion game (global games selection, panic runs) as given,
and (ii) respect sellers’ t = 0 acceptance best responses, which depend on beliefs about N.

The focus on consumer welfare is justified under a small seller surplus calibration (low
per sale margin u and small acceptance costs), such that seller welfare is plausibly second-
order relative to consumer welfare, while equilibrium acceptance and the run probability
are unaffected. The analysis is also consistent with regulatory practice, which is typically
interest in consumer outcomes and risks for the financial system. Moreover, disregarding
profits of the stablecoin issuer can be justified because rents by banks are not explicitly
modelled. Therefore, treating both bank surplus and issuer surplus as outside the welfare
objective is analytically consistent and motivated by actual regulatory policy.18

4.1.1 Uninternalized Destabilizing Run Externality

The destabilizing run externality builds on the link between adoption and fragility estab-
lished in Corollary 5. Formally, let N∗ denote the market equilibrium and NSP the solution
of a constrained planner, who takes the one-to-one conversion promise as given and who
can only choose the adoption rate. To cleanly isolate the run externality, I first study
the model with fixed seller acceptance. Adoption is classified as "excessive" if N∗ > NSP.
Proposition 6 summarizes the first efficiency result.

Proposition 6. (Excessive Adoption: Run Externality) Suppose Proposition 1 holds so that
θ ∗(N) is uniquely defined for each N. Then, for an interior adoption rate with more than one group
of coin holders and fixed seller acceptance, the equilibrium level of adoption is excessive relative to
the constrained efficient level, N∗ > NSP.

Proof. See Appendix Section A.10.5.

Intuitively, an inefficiently high level of stablecoin adoption can arise because the
marginal adopter of stablecoins at t = 0 does not take into account that she poses a
negative externality on other coin holders by increasing the probability of a stablecoin
run due to the destabilizing composition effect, i.e. dProb{θ < θ ∗}/dN > 0 (Corollary
5), which reduces everyone’s differential payoff from adopting stablecoins and pushes N∗

18The alternative of a planner’s choice under total welfare maximization suggests implications that are
similar to the planner’s choice under consumer welfare maximization.
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above NSP. Because the distribution of groups is discrete, it takes more than one group of
adopters for this composition effect to emerge. Without fixed seller acceptance the planner
also takes matching effects into account, an aspect that I discuss below in Section 4.1.2.

Regulatory perspective. Settings where a dominant US dollar stablecoin becomes the
de-facto instrument for cross-border or offshore transactions suggest to be especially ex-
posed to the "excessive adoption" mechanism described established in this paper. As an
illustrative example, suppose that a large stablecoin (e.g., Tether) scales into remittances.
This can generate sizable, transitory "parked" balances held by households who plan to
convert in the near future and do so immediately after receiving information about poten-
tial weaknesses of the balance sheet of the stablecoin issuer. Resultingly, negative issuer
news translates into "faster" redemptions among late adopters than among early "crypto-
native" users who hold stablecoins mainly as a conduit to access the crypto universe–an
empirically testable implication (see Section 6)–and suffer from this negative externality.

Relation to the literature. On a conceptual level, the mechanism developed in this paper
contrasts with classical "run externalities," where inefficiency arises from strategic com-
plementarities among ex-ante identical agents–such as in Diamond and Dybvig (1983),
Rochet and Vives (2004), and Goldstein and Pauzner (2005)–or through pecuniary price
channels in fire-sale and macro-prudential models (Lorenzoni, 2008; Davila and Korinek,
2017; Farhi and Tirole, 2012). Instead, here inefficiency is driven by a compositional exter-
nality: as adoption widens, the marginal adopter’s characteristics alter aggregate fragility
θ ∗(N), even when individual decisions are strategic substitutes at the adoption stage.

4.1.2 Uninternalized Erosion of the Transaction Value of Bank Deposits

Building on Section 4.1.1 I next study the effect of an uninternalized erosion of the trans-
action value of bank deposits. To isolate this effect, I introduce endogenouns seller
acceptance by stablecoin-native sellers. Proposition 7 summarizes the efficiency result.
Let Ñ∗ denote the decentralized adoption level under endogenous type-S acceptance.

Proposition 7. (Excessive Adoption: Uninternalized Erosion of Deposits) Under the condi-
tions of Proposition 6, let type-B acceptance be inelastic (δ B → ∞) and type-S acceptance respond to
adoption so that d f S,M/dN < 0 . Then the equilibrium level of adoption is excessive relative to the
constrained efficient level, Ñ∗ > NSP, under the sufficient condition that d∆p/dN > 0. Moreover,
the magnitude of the inefficiency increases if the erosion of deposits is introduced alongside the
uninternalized run externality.

Proof. See Appendix Section A.10.5.
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Intuitively, a higher expected level of stablecoin adoption is associated with fewer type-
S sellers deciding to also accept deposits as payment. It is in this sense that the transaction
value of deposits is eroded, which is to the detriment of consumers belonging to groups
g ∈ {1, ..., ĝ−1} who now face higher transaction costs. Given that stablecoin adopters do
not take into account that they pose a negative externality to non-adopters. Therefore, the
magnitude of the inefficiency increases (see also Corollary 1 below) provided d∆p/dN > 0,
meaning that the composition term dominates the acceptance term in Lemma 2 which
ensures uniqueness of the decentralized equilibrium.

Regulatory perspective. Facebook’s 2019 announcement to launch a global digital cur-
rency (Libra) was a wake-up call for central banks and financial regulators. As discussed in
the introduction, policy makers were primarily concerned that a rapid, large-scale stable-
coin adoption could reshape the payments landscape and erode banks’ retail deposit base,
reducing both the funding stability of banks and the transactional value of deposits. In
the present framework, such a reduction in deposits’ transactional value for non-adopters
amplifies the wedge between decentralized and planner allocations, strengthening the
rationale for a policy intervention (see Section 4.1.3). Empirically, a decline in deposit
acceptance by stablecoin-native sellers–such as crypto-affine merchants offering digital
goods–would be associated with a more pronounced excessive adoption.

Relation to the literature. Notably, the uninternalized erosion of bank deposits analyzed
in this paper differs conceptually from the financial disintermediation channel emphasized
in the existing literature Arner et al. (2020); Andolfatto (2021a); Chiu et al. (2023). The
disintermediation concern centers on the reallocation of savings from banks to alternative
digital intermediaries–such as stablecoin issuers or the central bank under a retail CBDC–
which may impair banks’ funding stability and ability to fund loans to the real economy.
In contrast, the mechanism in this paper operates through the transactional rather than
the intermediation role of bank deposits. In a richer model, the erosion of deposits’
transactional role could interact with the traditional disintermediation channel studied in
the literature. In the benchmark model of Brunnermeier and Niepelt (2019), such funding
shifts away from banks can in principle be neutralized through appropriate central bank
intermediation, yet the welfare loss identified in my paper would persist because it arises
from a deterioration in deposits’ transaction role rather than from impaired credit creation.

4.1.3 Policy Implications

From a policy perspective, we can distinguish between policies that take seller acceptance
as given and focus on addressing the concern of excessive stablecoin adoption, and policies
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that try to establish compatibility of payment systems. Through the lens of the model,
the latter set of policies can clearly help to deal with the uninternalized erosion of bank
deposits. E.g. by regulating sellers to accept both monies, a social planner can implement
multi-homing, f B,M = f S,M = 1, so that pB,g = pS,g = 1 and the inefficiencies identified
in Propositions 6 and 7 vanish (see Case A in Section 3.3.1). In fact, multi-homing by
all sellers makes bank deposits consumers’ preferred medium of exchange due to the
superior return. In practice, a limited regulatory reach, high seller acceptance costs, or
diverging seller preferences may be obstacles to such a regulatory intervention. Therefore,
alternative policies focusing on consumer adoption remain relevant.

Next considering the perhaps more interesting case of a constrained planner that cannot
directly affect seller acceptance profiles. Here the inefficiencies created by the externalities
discussed in Sections 4.1.1 and 4.1.2 could be corrected with Pigouvian-type interventions
that internalize the social cost of excessive adoption. Specifically, I consider a planner (or
regulator) who can impose an adoption levy users (or, equivalently, a subsidy for deposits)
that aligns private and social incentives. Corollary 1 summarizes the key insights.

Corollary 1. (Pigouvian Taxes) Consider a planner that sets an adoption levy but cannot directly
set seller acceptance. Let NSP denote the constrained–efficient adoption level that maximizesWC(N).

(i) Fixed acceptance. Under the conditions of Proposition 6, the optimal levy is:

ι
∗ = −∂WC

∂θ ∗
dθ ∗

dN

∣∣
N=NSP > 0.

(ii) Endogenous type-S acceptance (inelastic type-B). Under the conditions of Proposition
7, the optimal levy is:

ι̃
∗ = −∂WC

∂θ ∗
dθ ∗

dN

∣∣
N=NSP −ΣG

g=ĝ

 ∂WC

∂ pB,g

d pB,g

dN
+

≈0︷ ︸︸ ︷
∂WC

∂ pS,g

d pS,g

dN

∣∣N=NSP > ι
∗,

where the strict inequality uses ∂WC

∂ pB,g
> 0 and d pB,g

dN < 0 on the interior, while d pS,g
dN ≈ 0 when

the type-B margin is inelastic.

Proof. See Appendix Section A.10.6.

Intuitively, under fixed seller acceptance, the optimal adoption levy is proportional to
the marginal change in fragility to correct for the run externality. This is because the
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derivative of consumer welfare with respect to the run threshold is negative in interior
regions, ∂WC/∂θ < 0, while dθ ∗/dN > 0. This adoption levy parallels the macroprudential
taxes proposed by Davila and Korinek (2017), but here the externality operates through
the composition of adopters rather than through asset prices or leverage.

Instead, with endogenous type-S acceptance, the optimal adoption levy corrects both
the run externality–whereby wider adoption raises fragility–and network effects–whereby
declining deposit acceptance reduces the transactional value of deposits. In equilibrium,
the levy thus includes a fragility component and a deposit-erosion component, each
positive when adoption both destabilizes the issuer and undermines deposits’ payment
role. Notably, the welfare wedge is larger than with fixed seller under the maintained
assumption that d∆p/dN > 0, which ensures uniqueness.

4.2 Disclosure and Moral Hazard

Recent regulatory initiatives, such as the 2025 U.S. GENIUS Act and the EU Digital Finance
Package (US 2021; EU 2022), emphasize enhanced transparency and stricter rules for the
composition of stablecoin reserves (monthly public disclosures, restrictions to high-quality
liquid assets, and–to some extend–capital requirements). To speak to this debate, I modify
the baseline model from Sections 3.1–3.2 by introducing a classical risk-shifting problem.

Modified setup. The issuer chooses a portfolio risk level x ∈ {xL,xH}, where xL > 0 is
the safer choice and xH ≡ 0 the riskier benchmark nesting the baseline model. Now, θ ∼
U [θ (x),θ (x)] with θ (x) ≡ xξ1R+(1− xξ1)θ and θ (x) ≡ xξ1R+(1− xξ1)θ , with sensitivity
parameter ξ1 ∈ (0,1] and R = (θ + θ )/2, so that xH is a mean-preserving spread of xL,
because dθ (x)/dx = −dθ (x)/dx > 0. In the event of a run, the liquidation value is ř(x) =

xξ2rL +(1− xξ2)r, with rL ∈ (r,1) and ξ2 ∈ (0,1], so that ř(xL) > ř(xH) = r.

Remark. (Socially Optimal Portfolio Choice) Under fixed seller acceptance, consumer welfare
is strictly higher for the safer portfolio x = xL, because it lowers the run probability and preserves
resources available for redemption.

The stabilizing effect of xL operates via (i) a higher liquidation value ř(xL) and (ii) a
less dispersed fundamental distribution. A sufficient condition for (ii) to be stabilizing
is θ ∗(xL) < R, which is satisfied when the ex-ante run probability is below one half–an
innocuous condition (henceforth assumed to hold); otherwise there would be no adoption.
Intuitively, because the support contracts symmetrically toward the mean R, compressing
the distribution pulls mass away from the run region if the threshold lies below the mean.
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Issuer profits and the moral-hazard wedge. Denote by π(N;θ ∗(x;N),x) the issuer’s ex-
pected profits under the portfolio choice x:

π(N;θ
∗(x;N),x) =

∫
θ∗(x,N)

θ (x)

0
θ (x)−θ (x)

dθ +
∫

θ (x)

θ∗(x,N)

θ −1
θ (x)−θ (x)

N(x,θ ∗) dθ , (15)

and by ∆π(N)≡ π(N;θ ∗(xH ;N),xH)−π(N;θ ∗(xL;N),xL) the private gain from risk-taking.
Note that for a given adoption rate profits are decreasing in the run threshold, ∂π/∂θ ∗ < 0.

No commitment. If the issuer’s portfolio choice cannot be credibly verified, coin holders
correctly anticipate x = xH . Choosing xL only lowers the issuer’s upside without affecting
beliefs or adoption. Thus, selecting x∗ = zH maximizes expected profits.

Commitment. Suppose instead that the issuer can credibly commit to x (e.g., via a
regulatory disclosure regime). Even then, private and social incentives may diverge:

Proposition 8. (Privately and Socially Optimal Portfolio Choices under Commitment)
Under fixed seller acceptance the privately optimal portfolio choice can differ from the socially optimal
portfolio choice xSP = xL even if the issuer can commit. An example for ∆π > 0 ⇔ x∗ = xH < xSP

arises for xL ↘ 0 if the adoption rate is locally unaffected by changes in xL, i.e. if ∆0,ĝ > 0 and
∆0,ĝ+1 < 0, and if ξ2/ξ1 < ξ .

Proof. See Appendix Section A.10.7, which also defines ξ > 0.

Intuitively, for ξ2/ξ1 sufficiently small, the safe portfolio has a significantly lower upside,
while generating small stability gains. Although this existence result is established for the
limiting case xL ↘ 0, the key mechanism continues to hold as long as the response of N∗,
and θ ∗ to changes in portfolio risk remain weak–which is assured when adoption is locally
insensitive (for ∆0,ĝ > 0 and ∆0,ĝ+1 < 0). In such environments, disclosure and market
discipline alone are insufficient: capital, liquidity, or collateral-quality requirements are
needed to restore the alignment between private and social incentives.

Skin in the game. In fact, the misalignment between the privately and socially optimal
portfolio choice is less likely to occur if the monopolistic issuer has additional skin-in-the-
game, which could, e.g., stem from future transaction fee income (Section 5.2), or from the
affiliation with a cryptocurrency exchange.19 Corollary 2 develops this insight by adding

19In practice, USD Coin and the exchange Coinbase is such a cases. A crypto exchange experiences a
significant disruption and possibly risks bankruptcy if its affiliated stablecoin is devalued. Consequently,
its issuance policy is likely to be more prudent. The self-reported asset breakdowns published by issuers
suggest that this conjecture can be verified; already in October 2022 USD Coin claimed to be exclusively
backed by U.S. government guaranteed debt instruments, which stands in stark contrasts to the more risky
investments by the non-affiliated stablecoin Tether USD during that time (see Table A2 in the Appendix).
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a disutility term d in a parsimonious way to the issuers expected profits in (15).

Corollary 2. (Skin in the Game) Suppose the stablecoin issuer incurs an extra disutility, d > 0,
from bankruptcy. Then ∃d > 0, such that x∗ = xSP for xL ↘ 0 if d > d > 0.

Competition. Notably, the mechanism described in Proposition 8 is not robust to the in-
troduction of fierce competition among multiple issuers. Assuming a contestable market,
new entrants can credibly announce their risk and compete by setting x. This results in
an outcome that maximizes consumer welfare. Thus, barriers to entry, such as switching
costs, suggest to play a significant role in creating a moral hazard wedge.

Policy discussion. The results in this section speak directly to the policy debate on
stablecoin regulation. Persistent opacity regarding reserve composition and self-reported,
non-verifiable disclosures have been central regulatory concerns since at least 2021 (US
2021; Bains et al. 2022). Without credible commitment, a classic moral-hazard problem
arises, inducing excessive risk-taking. Disclosure regimes such as the U.S. GENIUS Act
can strengthen commitment by enabling external verification of portfolio quality, yet
disclosure alone may not suffice–particularly in a highly concentrated market (Figure 1)
where competitive discipline is weak. Effective regulation must directly shape issuer
portfolios through requirements on reserve-asset quality, liquidity, diversification, and
custodial risk management. Moreover, adequate capitalization is essential: capital buffers
not only absorb losses but skin-in-the-game also help to align private and social incentives.

5 Extensions and Robustness

In this section I discuss several extensions to the model and the robustness of the main
findings. First, Section 5.1 discusses the stabilizing role of congestion effects leading to
an endogenous response of conversion costs. Then Section 5.2 considers the resilience
of the issuer, introducing fixed costs, transaction fees revenue and a drop in seigniorage.
Thereafter, Section 5.3 discusses e-money providers, narrow banks and a hybrid CBDC.
Finally, Section 5.4 covers alternative model specifications and robustness.

5.1 Congestion: Endogenous Conversion Cost

Congestion effects are important in crypto markets, where large transaction volumes
within short time windows can trigger sharp fee increases. Figure A1 in the Appendix doc-
uments such an episode around the USD Terra devaluation in May 2022, when Ethereum
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on-chain fees on the dominant network used by USD Terra rose more than fourfold, likely
dampening outflows from Tether and mitigating contagion across stablecoins.

To study the stabilizing role of congestion, I let the conversion cost at t = 1 depend on the
aggregate conversion demand, τe

1(A) = τ +ωA with ω > 0. Similar to Diamond–Dybvig
models with increasing nominal t=1 good prices Skeie (2021); Schilling et al. (2021), higher
conversion demand raises conversion costs and rations the run threat.

Corollary 3 shows formally that a stronger endogenous response to congestion has
a stabilizing effect. Perhaps surprisingly, the probability of runs is lower than in the
benchmark model even if the endogenous conversion cost is lower than the exogenous
conversion cost used in the benchmark model for a wide range of aggregate conversion
demands, which can reach up to A = 1/2.

Corollary 3. (Endogenous congestion cost) Under the conditions of Proposition 2, the revised
equilibrium condition for the stablecoin runs game is:

Ie(θ ∗) ≡ ∆pτ2 −
(

τ +
ω

2

)
+
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1− (r−κA)θ ∗/r−ψ

1−κA

)
dA = 0. (16)

The probability of runs decreases when the conversion cost is more sensitive to increases in the
conversion demand, dθ ∗/dω < 0. Moreover, it is lower than in the benchmark model with an
exogenous conversion cost if τ1 < τ +ω/2. This result holds even if τe

1(A) < τ1,∀A ∈ [0,1/2).

5.2 Resilience of the Issuer and Seigniorage

The probability of stablecoin runs, Prob{θ ≤ θ ∗}, stands in a close relationship to the
profitability and resilience of the issuer via the critical threshold Â(θ ) from Equation (5),
which describes the strength of the issuer to stem against conversion demands at t = 1. I
consider two modifications of the baseline model that alter the issuer profits in Equation
(15). First, I consider a variant of the model with fixed operating costs. Second, I allow
the issuer to generate income from transaction fees. Lastly, I study the effects of changes
in seigniorage. Proposition 9 gives a formal summary of the results.

Proposition 9. (Fixed Costs of Operation and Transaction Fee Income) Under the conditions
of Proposition 2, the probability of a stablecoin run:

(a) increases in the level of the fixed cost: dProb{θ ≤ θ ∗}/dξ > 0
(b) decreases in the transaction fee income: dProb{θ ≤ θ ∗}/d f < 0, if f τ1 is not too high
(c) decreases in seigniorage income: dProb{θ ≤ θ ∗}/dψ < 0.

Proof. See Appendix Section A.10.8, which also explains each model variant.
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Note that the results of Proposition 9 are derived for a fixed adoption rate N by analyzing
the continuation equilibrium as in Proposition 2. Intuitively, factors lowering the resilience
of the issuer to withstand redemption requests lower the probability of a stablecoin run.

5.3 Stablecoins vs. E-money, Narrow Banking, and Hybrid CBDC

With the GENIUS Act the US moved towards a regime of federal oversight that only allows
federally insured banks and non-bank financial institutions subject to a 100% reserve re-
quirement to issue stablecoins, the European Central Bank moves towards a digital euro. If
implemented and accompanied by adequate safeguards for operational and technological
risks, as well as a backstop by the central bank, privately issued stablecoins can be made
risk-less and suitable as a medium of exchange that fulfills the no-questions-asked principle
put forward by Gorton and Zhang (2021). Indeed, tightly regulated stablecoins can be a
substitute for a US retail CBDC (Waller 2021; Andolfatto 2021b).

Such arrangements are consistent with a hybrid CBDC architecture in which users hold
a direct claim on the central bank BIS (2021). China’s e-CNY and the narrow-banking
regime applied to Alipay and WeChat Pay illustrate this approach, where e-money issuers
must fully back customer balances with deposits at state-owned banks.

Through the lens of the model, tightly regulated issuers can be represented by adjusting
the fundamental return θ and the liquidation cost r. Requiring investments in safe assets
(e.g., short-term Treasuries) and imposing capital buffers ensures θ ≥ 1, eliminating sol-
vency risk. Remaining fragility arises solely from liquidity shocks when divesting assets
is costly or uncertain, which can be modeled as incomplete information about r(θ ) with
r′(θ ) > 0, where the liquidation value can fall short of one for low fundamental realiza-
tions. Applying the same global games logic as in Section 3.1 yields similar insights.

To remove such liquidity-based runs, policymakers can grant issuers access to the
central-bank balance sheet or require them to hold reserves like narrow banks, ensuring
r ≥ 1 in all states. A remaining concern is the limited profitability of these designs in a low
interest-rate environment,20 which may call for additional capital buffers or subsidies.

5.4 Alternative Model Specifications and Robustness

Throughout the paper, I assume that a devaluation of stablecoins does not affect seller
acceptance, i.e. the matching probabilities remain unchanged. This assumption allows

20As emphasized by Jean Tirole in a 2025 Financial Times interview, https://www.ft.com/content/
445e7fb6-1ec8-47f3-b74d-87f7960e85d6.
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aggregation over the group-specific ∆pgs via the Belief Constraint of Sákovics and Steiner
(2012), because ∆pg does not depend on the aggregate action. While plausible, the main
insights are robust to an alternative specification where a devaluation at t = 1 lowers
the probability of matching with sellers accepting stablecoins. Analytical tractability then
requires focusing on the two–type case, but the qualitative implications remain unaffected.

The model also assumes a monopolistic issuer. Allowing for multiple issuers primarily
reinforces the role of fixed operating costs discussed in Section 5.2: duplicated costs spread
over smaller user bases make smaller issuers more fragile. Conversely, the destabilizing
composition effect from Section 3.1 strengthens if the dominant issuer, with the highest
adoption, disproportionately attracts flighty coin holders.

From a policy perspective, contagion risk warrants focusing on the weakest link, which
could be lightly regulated off-shore issuers. Empirical evidence points to strong intercon-
nectedness within crypto, where market spillovers often exceed idiosyncratic variation
Ferroni (2022). Likewise, stablecoins exhibit high co-movement across issuers and with
other crypto assets Gorton et al. (2022). Hence, assessing individual issuers in isolation is
insufficient: institutional similarities and potential linkages imply that a run against one
coin can serve as a wake-up call, prompting a wider run (Ahnert and Bertsch, 2022).

6 Testable Implications

The nascent empirical literature on the stablecoins market has documented that stablecoins
play a key role in the $3-4tn market for crypto assets (Hoang and Baur 2021). Moreover,
there is an increasingly closer link with traditional financial markets, as well as a high
co-movement within the stablecoins universe, which raises the risk of contagious runs.21

In fact, changes in the stablecoin market capitalization affect the US commercial paper
and treasury markets (Barthelemy, Gardin and Nguyen 2023; Kim 2022). As the stablecoin
market continues to evolve, further research in this area will be critical to ensuring stability
and resilience through the design of effective regulatory frameworks.

This section discusses implications offered by the theory and how they could be tested.
First, the model offers a prediction for stablecoin adoption and fragility that emphasizes
the destabilizing role of increasingly flighty stablecoin adopters (Corollary 5).

21Gorton et al. (2022) measure the frictions faced by stablecoin holders when transacting and converting
their coins to fiat currency, documenting a negative association with the convenience yield and a high
co-movement. Grobys et al. (2021) show that Bitcoin volatility is an important factor driving the volatility
of stablecoins. In related work, Lyons and Viswanath-Natraj (2020) show that Tether’s peg to the US dollar
is primarily stabilized by arbitrage traders, rather than by the issuer.
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Prediction 1: The most marginal (or recent) stablecoin adopters tend to be more flighty than the
average stablecoin holder.

Prediction 1 rests on the heterogeneity in matching probabilities for consumers. Does
the marginal stablecoin adopter become more flighty when adoption reaches broader
market segments? By how much? One way to test the relevance of consumer heterogeneity
is to group wallet address data according to whether wallets are likely to belong to early
stablecoin adopters or to more recent adopters. Thereafter, groups can be associated with
a flightiness measure based on the sensitivity to deviations from the peg, e.g. during a
run (USDC during the Silicon Valley Bank failure; Terra-Luna crash).

Next, I move to the model predictions for stablecoin adoption and fragility in relation
to the transaction role of stablecoins (Sections 3.1-3.2).

Prediction 2a: The stability of stablecoins is positively associated with their transaction value.
Prediction 2b: The transaction value of stablecoins is (i) positively associated with seller accep-
tance, and (ii) negatively associated with the flightiness of the marginal coin holder.

The Predictions follow from Proposition 2 and Corollaries 4-5, respectively. Empirically,
these predictions are more challenging to test. A stability measure could be constructed
based on the tightness of the peg, e.g. the width of the price band around dollar parity
and the frequency of peg deviations. The transaction value, a proxy for the medium-of-
exchange role of stablecoins, could be proxied by their usability for purchase of goods
and services, and by measuring the transaction fees for purchasing crypto assets.22 An
empirical pattern consistent with these predictions would be that peg stability improves
with the scale of transactional usage or outstanding supply.

Lastly, I turn to conditions under which stablecoins may be prone to runs that have to
do with the characteristics of traders and the market infrastructure.

Prediction 3: The stability of stablecoins increases if the proportion of active traders is lower.
Prediction 4: The stability of stablecoins increases if transaction costs are more sensitive to spikes
in conversion demand.

Prediction 3 is based on the negative effect of the proportion of active traders, κ , on the
stability of the stablecoin (Proposition 2). It could be tested by distinguishing between
sophisticated and unsophisticated investors (Liu et al., 2023) and measuring the sensitivity
to peg deviations. Prediction 4 follows from Corollary 3 on the role of congestion effects. It
could be tested using data on transaction fees and blockchain network volumes. Regular
network updates and changes in the market infrastructure may offer quasi-exogenous

22In a richer model, consumers may also derive an interest income from lending stablecoins (Bertsch,
2023), which constitutes an additional benefit from holding stablecoins beyond transaction-cost savings.
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shocks to the sensitivity of conversion costs to network congestion. One could also test
whether coins on a blockchain with more sensitive transaction fees are more stable.

7 Conclusion

This paper modifies existing theories of bank runs and currency attacks to analyze the
stability of stablecoin arrangements. Critically, I take a payment perspective where both
insured bank deposits and risky stablecoins offer a transaction value for heterogeneous
users who wish to have the right money on hand. This allows me to highlight a novel link
between the composition of coin holders, which is shaped by stablecoin adoption, seller
acceptance, and fragility. The theoretical framework aims to inform risk assessment and
appropriate regulation of stablecoins. It identifies two mechanisms that justify prominent
concerns in regulatory community about excessive stablecoin adoption: (i) a run external-
ity, whereby broader adoption increases the flightiness of marginal holders, raising run
risk; and (ii) network effects, which erode the payment role of bank deposits. Moreover, the
analysis provides theoretical support for the GENIUS Act’s approach of combining disclo-
sure requirements with reserve management oversight, while suggesting that additional
capital requirements may be necessary to address systemic fragility.
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A Appendix

A.1 Timeline

Time t = 0 Time t = 1 Time t = 2

1. Seller acceptance decisions: 4. The fundamental θ is realized, but 7. The outcome of the t = 1 conversion
Sellers choose which monies unobserved; a fraction κ of coin holders game and the fundamental θ are observed;
to accept for payment at t = 2 become active; others remain passive each consumer is matched with a seller

2. Consumers’ adoption game: 5. Stablecoin conversion game: 8. If the issuer’s reserves fall short of the
Consumers simultaneously decide Active coin holders receive private face value of claims held by the remaining
whether to convert deposits to signals xi and simultaneously choose active and passive coin holders, the issuer is
stablecoins (a0,i = 1) or not (a0,i = 0) whether to demand conversion to insolvent and the stablecoins are devalued

deposits (a1,i = 1) or keep coins (a1,i = 0);
3. The stablecoin issuer invests passive holders are dormant 9. Consumers buy goods and convert their
all funds received from consumers money (if necessary)
who adopt stablecoins 6. The issuer meets coin holders’

conversion requests by divesting assets 10. Type-B and type-S sellers convert the
coins received; all sellers pay production
costs with insured deposits ($)

Table A1: Timeline of events.

A.2 Additional Figures
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Figure A1: End of day (CEST) price in US dollars (left axis) and average daily gas price on
the Ethereum network measured in 10−9 units of the cryptocurrency ETH (right axis) over
the period from May 6, 2022 to May 16, 2022. Source: coingecko.com and ycharts.com.
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Figure A2: Solvency of the stablecoin issuer as a function of the fundamental realization
θ and the population fraction A of coin holders demanding conversion. Only in the
intermediate region, θ ∈ (θℓ,θh), the solvency of the issuer depends on the level of the
aggregate conversion demand A.

A

Δ1,i

1

Δ1,i(A; θ)

Solvent
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Δ1,i(1; θ) > 0

̂A( +
θ , +r , −κ )

0

Δ1,i(0; θ) < 0

Figure A3: The above figure illustrates how the differential utility payoff ∆1,i(A;θ ) varies
with A for a given θ ∈ (1,θh). If the issuer is solvent, i.e. for A < Â(θ ), then ∆1,i is (locally)
invariant in the aggregate conversion demand and negative, meaning that there is no
benefit from demanding conversion. As shown in Section 3.3, this is because consumer i
belonging to group gi would otherwise not have adopted stablecoins at t = 0.
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A.3 Tether Asset Breakdown

Table A2 shows Tether’s self-reported asset breakdown as of June 2022 and September
2022, when USDT was backed by a range of risky assets, including corporate bonds,
secured loans, investments in digital tokens, commercial paper and deposits in non-US
regulated financial institutions. The latest reporting from June 2023 in column 3 indicates
a reduced exposure to commercial paper and bank deposits, but more granular data is
not available, and the quarterly reporting is published with a substantial delay.

Assets Value in bn USD

06/30/2022 09/30/2022 06/30/2023
Commercial Paper 8,402 50
& Certificates of Deposit A-1+ rating 1,434 50

A-1 rating 5,465
A-2 rating 1,499

Cash & Bank Deposits 5,418 6,077 91
Money Market Funds 6,810 7,102 8,134
U.S. Treasury Bills 28,856 39,678 55,810
Non-U.S. Treasury Bills 397 182 63
Reverse Repurchase Agreements 2,992 3,024 9,470
Secured Loans 4,494 6,136 5,504
Corporate Bonds, Funds & Precious Metals 3,487 3,194 3,386
Other Investments & digital tokens 5,551 2,617 4,041
Total 66,410 68,061 86,499

Table A2: Tether asset breakdown at 30 June 2022, 30 September 2022 and 30 June 2023.
Assurance opinion by BDO, Italy.

A.4 Fundamental Solvency and Insolvency

The condition in Inequality (4) defines a solvency threshold in terms of the issuer’s funda-
mental θ . The issuer is fundamentally solvent for any θ ≥ θh, regardless of the redemption
demand A, where:

θh ≡
(1−κ)r

r−κ
> 1. (17)

Following the standard approach in the global games literature, I assume θ > θh so that
this solvency region is non-empty. Conversely, rearranging (4) yields a critical threshold
θ̂ (A) such that the issuer is insolvent for all θ < θ̂ (A), given a redemption demand A:

θ̂ (A) ≡ (1−κA)r
r−κA

> 1. (18)

This defines the threshold below which the issuer cannot meet her obligations at t = 2.
θ̂ (A) is strictly increasing in A,κ and decreasing in r, implying that higher liquidation
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values improve solvency prospects, while greater redemption pressure worsens them.23

A lower bound for insolvency is obtained by evaluating (18) at A = 0, yielding θℓ = 1.
Hence, if θ < θℓ, the issuer lacks sufficient resources to meet obligations even in the
absence of redemption pressure. Assuming θ < 1, she is fundamentally insolvent for all
θ ∈ [θ ,θℓ).
Intermediate region. In the intermediate range θ ∈ (θℓ,θh), solvency depends on the
realized aggregate conversion demand A. Equation (18) allows to trace the solvency
boundary as a function of A, as illustrated in Figure A2 in the Appendix.

A.5 Complete Information Benchmark: ϵ= 0

This section considers the benchmark with complete information, where active coin hold-
ers obtain a precise signal at t = 1 about the resources available to the issuer at t = 2.
Under complete information, each holder compares the payoff from converting at t = 1
to the payoff from keeping coins, taking as given the matching probabilities pB,g(N) and
pS,g(N) induced by the t = 0 acceptance/adoption profile (see Equation (3)).

Suppose an individual active coin holder i believes that all others keep their coins, i.e.
a1,−i = 0. Then her optimal strategy is to demand conversion if and only if the differential
payoff from conversion relative to keeping coins is weakly positive. A weak preference
for conversion holds whenever θ ≤ θℓ = 1, which implies that for all θ ≤ 1 it is (weakly)
dominant to convert.

Following the same logic, I can derive an upper bound from the weak preference for
not demanding conversion when the active coin holder i believes that all others demand
conversion, i.e. a1,−i = 1. Let ω̃ denote the cutoff routing weight that solves:

(pB,s − pS,s)τ2 − τ1 = 0, (19)

where s ∈ {1, . . . ,G} is the group of coin holders with the lowest probability of being
matched with a seller who accepts stablecoin payments. Then it is the (weakly) dominant
action for all coin holders with ωs ≥ ω̃ to keep their stablecoins whenever θ ≥ θh.

As the analysis of the conversion game at t = 1 requires that stablecoins are adopted by
at least some consumers, I assume (and later verify) that the cutoff condition in Equation
(19) is satisfied for a positive mass of types, which intuitively requires that the routing
weight of the most stabelcoins-oriented group, ωG, is not too high.

Next, I analyze what happens in the intermediate region θ ∈ [1,θh]. Recall that the
intermediate region is non-empty and observe that for any θ ∈ [1,θh], multiple belief-
driven equilibria exist. Specifically, there always exists a pure strategy Nash equilibrium
where all coin holders demand conversion and a pure strategy Nash equilibrium where
all coin holders keep their stablecoins. Proposition 10 summarizes.

23Observe that Â(θ ) is strictly increasing in θ and in r for all θ ∈ (1,θh), as the issuer is only insolvent at
t = 2 for higher levels of aggregate conversion demand at t = 1. Moreover, Â(θ ) is strictly decreasing in κ , as
a higher share of active coin holders translates into a higher conversion demand, thereby making it harder
for the issuer to be solvent. Finally, note that θ̂ (A) ≤ θh requires A < Â(θh).
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Proposition 10. (Continuation Equilibrium Under Complete Information) Let ϵ= 0. Given
Assumption 1 and a positive level of adoption N > 0, there exists a unique equilibrium of the
conversion game where all active stablecoin holders demand conversion if θ ∈ [θ ,1) and a unique
equilibrium where no stablecoin holder demands conversion if θ ∈ (θh,θ ]. In the intermediate
range, θ ∈ [1,θh], there exist multiple pure strategy Nash equilibria.

A.6 Posterior Beliefs

Recall that the marginal group ĝ ∈ {1, ...,G} is defined as the group of stablecoin adopters
who find holding stablecoins least attractive. Using Equation (7), I define for each coin
holder i in group gi ∈{ĝ, ...,G} the differential expected payoff from demanding conversion,
i.e. a1,i = 1, conditional on her private signal xi:

E[∆1,i(A;θ )|xi] ≡ Prob{A ≤ Â(θ )|xi} (∆pgiτ2 − τ1) (20)

+Prob{A > Â(θ )|xi}
∫

θ

θ

(
1+∆pgiτ2 − τ1 −

r−κA
r θ −ψ

1−κA

)
h(θ |xi)dθ ,

where h(θ |xi) denotes the posterior probability of a fundamental realization of θ , after
observing the signal xi. While coin holders potentially face heterogenous type-specific
payoff functions, they all share an identical differential expected payoff conditional on
their group and private signal.

A.7 Derivation of Dominance Regions

The posterior belief that the realization of θ exceeds the level y ∈ [θ+ ϵ,θ− ϵ] is:

Prob{θ ≥ y|xi}= Prob{xi − εi ≥ y|xi}=


1 i f xi > y+ ϵ
1
2 +

xi−y
2ϵ i f xi ∈ [y− ϵ,y+ ϵ]

0 i f xi < y− ϵ .
(21)

Based on Equation (21), I next establish an upper and lower dominance region of
very favorable and very unfavorable private signal realizations, respectively, such that the
actions of coin holders observing a signal that falls in these regions do not depend on the
decisions of others. Specifically, given Assumption 1 there exist two bounds x and x that
define the dominance regions [θ− ϵ,x) and (x,θ+ ϵ].

Upper dominance region. A coin holder i belonging to group gi ∈ {ĝ, ...,G} with the
signal xi > xgi strictly prefers to keep her coins even when all other active coin holders
demand conversion, i.e. A = 1, where xg:

Prob{θ ≥ θh|xi = xg}−1+(pS,g − pD,g)τ2 + τ1 +
∫

θh

θ

r−κ

r θ −ψ

1−κ
h(θ |xi = xg)dθ = 0. (22)
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Observe that the left-hand side of Equation (22) takes on a negative value if xi < θh − ε

and a positive value if xi > θh + ε and τ1 +(pS,g − pB,g)τ2 > 0, which holds provided there
is adoption of stablecoins. Moreover, the left-hand side strictly increases in xi = xg. As a
result, a sufficient condition for no conversion demand by all coin holders can be obtained
by solving Equation (22) for the marginal group s. There exists a unique x ≡ xs such that it
is the dominant action for all coin holders with a private signal xi > x to keep their coins.

Lower dominance region. Analogously, a coin holder i belonging to group gi ∈ {ĝ, ...,G}
who receives the private signal xi < xg strictly prefers to demand conversion even when
all other coin holders keep their stablecoins, i.e. A = 0, where xg solves:

Prob{θ ≤ θℓ|xi = xg}(1− τ1 − (1− pB,g)τ2)−
∫ 1

θ

( r−κ

r θ−ψ

1−κ
− (1− pS,g)τ2

)
h(θ |xi = xg)dθ

−Prob{θ > θℓ|xi = xg}(τ1 +(pS,g − pB,g)τ2) = 0. (23)

Observe that the left-hand side of Equation (23) takes on a positive value if xi < θℓ−ε due
to ψ > ψ in Assumption 1. Conversely, it takes on a negative value if xi > θℓ+ ε since
−τ1− (pS,g− pB,g)τ2 < 0. Moreover, the left-hand side is strictly decreasing in xi = xg. As a
result, a sufficient condition for no conversion demand by all coin holders can be obtained
by solving Equation (23) for group G. There exists a unique x ≡ xG such that it is the
dominant action for all coin holders with a private signal xi < x to demand conversion.
This defines the dominance regions [θ− ϵ,x) and (x,θ+ ϵ].

A.8 Critical Mass Condition

Suppose that x∗g+1 ≤ x∗g,∀g ∈ {ĝ, ...,G−1}, meaning that coin holders belonging to a group
with a higher relative benefit from stablecoins are less inclined to demand conversion. For
adoption by at least one and up to G− (ĝ−1) groups, the critical mass condition is:

µĝmĝ max{0,min{1
2 +

x∗ĝ−θ∗

2ϵ ,1}}+∑
G
g=ĝ+1 mg max{0,min{1

2 +
x∗g−θ∗

2ϵ ,1}}
N

= Â(·) = (θ ∗−1)r
κ(θ ∗− r)

,(24)

where µĝ ∈ (0,1] accounts for the fact that the coin holders belonging to group ĝ, who have
the lowest relative benefit from holding stablecoins, may be indifferent between adopting
stablecoins or holding bank deposits, as discussed in Section 3.3.

A.9 Indifference Conditions

There are G− (ĝ− 1) indifference conditions, one equation for coin holders in each group,
that depend on the run threshold θ ∗ and the group-specific signal thresholds x∗ĝ, ...,x∗G:

E[∆1,i(A;θ
∗)|x∗gi=g] = 0,∀g ∈ {ĝ, ...,G}. (25)
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A.10 Proofs

A.10.1 Proof of Proposition 1

I start with preliminary results. It is convenient to redefine the private signal as xi =
θ +σηi, where ηi = U ∼ [ϵ,+ ϵ] and εi = σηi. Following Sákovics and Steiner (2012) the
aggregate action can be rescaled as:

Ã(ξ ,Γ) ≡
G

∑
g=s+1

mgF(Γg −ξ )+msµsF(Γs −ξ ),

where ξ is a scalar and Γ is a vector of Γgs that relates the group-specific threshold signals
to the signal threshold of a group k as follows: Γg ≡ (x∗g − x∗k)/σ and θ = x∗k +σξ . Then I
write the strategic beliefs as:

Ag(A,Γ) = Pr{Ã(Γg −η ,Γ) < A}= Pr{
G

∑
h=s+1

mhF(Γh −Γg +η)+msµsF(Γs −Γg +η) < A}.

Define ϑ (A,Γ) as the inverse function of Ã(ξ ,Γ) with respect to ξ , where dϑ /dA < 0,
because dÃ(ξ ,Γ)/dξ < 0 for Ã(ξ ,Γ) ∈ (0,1). Next, following Lemma 4 in Sákovics and
Steiner (2012) I establish that the densities associated with the strategic belief are bounded:

0 ≤
∂Ag(A,Γ)

∂A
=

f (Γg −ϑ (A,Γ))

∑
G
g=s+1 mg f (Γg −ξ )+msµs f (Γs −ξ )

≤ 1
mg

.

Finally, define the expected utility payoff of the threshold type as:

Hσ
g (x1,Γ) ≡ E[∆(A;θ ,N)|(x∗g,gi = g)] =

∫ 1

0
∆(x1 +σϑ (A,Γ),A)dAg(A,Γ),

where the adoption rate is dropped in the last line for simplicity. Note that the beliefs are
independent of σ so that the Hσ

g (xk,Γ)’s are well-defined for all σ ≥ 0.
The proof proceeds in three steps. Step 1 follows the translation argument in Frankel

et al. (2003) and establish by contradiction that if there is a solution to the system of
indifference conditions given by:

Hσ
g (x1,Γ) = 0,∀g ∈ {s, ...,G},

then it must be unique. Thereafter, I establish equilibrium convergence (Step 2) and apply
the Belief Constraint of Sákovics and Steiner (2012) (Step 3) to derive (9) in Proposition 1.
Finally, existence is established by iterated elimination of dominated strategies.

Step 1: Suppose there exist two distinct solutions, (x1,Γ) and (x′1,Γ′).
First, consider the case where Γ = Γ′ and x1 ̸= x′1. Recall that ∆i is weakly decreasing

in θ for all groups so that ∆i(x′1 + σϑ (A,Γ′),a) ≤ ∆i(x1 + σϑ (A,Γ),a) if x′1 > x1. More-
over, A∗ > (A∗)′ if x′1 > x1 since Â(θ ) is strictly increasing in θ . As a result, Ag(A∗,Γ) >
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Ag((A∗)′,Γ). There is a contradiction: Hσ
g (x

′
1,Γ) < Hσ

g (x1,Γ), because ∆i(x′1 +σϑ (A,Γ′)) ≤
∆i(x1+σϑ (A,Γ)) for A ∈ ((A∗)′,A∗) due to the discontinuity of ∆i at the solvency threshold
Â(θ ) so that:∫ 1

0
∆i(A,x′1 +σϑ (A,Γ))dAg((A∗)′,Γ) <

∫ 1

0
∆i(A,x1 +σϑ (A,Γ))dAg(A∗,Γ).

Second, consider the case where Γ ̸= Γ′ and, without loss of generality, x1 ≤ x′1. Choose
h ∈ argmaxg(Γ′

g − Γg) and let D = maxg(Γ′
g − Γg) ≥ 0. Notice that Γ′

h − Γ′
g ≥ Γh − Γg,∀g ∈

{s, ...,G} holds with strict inequality at least for one group g due to the assumption that
Γ ̸= Γ′. Let x̃1 = x′1 +σD, then:

Hσ
h (x̃1,Γ) ≤ Hσ

h (x1,Γ),

which leads to a contradiction, as shown below. Next, use the substitution a= ã(Γh−ηh,Γ),
x̃h = x̃1 +σΓh, and x′h = x′1 +σΓ′

h to re-write the expected utility payoff as:

Hσ
h (x̃1,Γ) =

∫ +η

−η

∆h(x̃h −σηh, ã(Γh −ηh,Γ))d f (ηh)dηh

Hσ
h (x

′
1,Γ′) =

∫ +η

−η

∆h(x′h −σηh, ã(Γ′
h −ηh,Γ′))d f (ηh)dηh,

where I use that ϑ (A,Γ) is the inverse function of Ã(ξ ,Γ) with respect to ξ . Observe that
x̃h = x′1 +σD+σΓh = x′h. Moreover, because of Γ′

h −Γ′
g ≥ Γh −Γg,∀g ∈ {s, ...,G}:

∑
g

mg(1−F(Γ′
g −Γ′

h +ηh))+msµs(1−F(Γs −Γ′
h +η

′
h))

≥ ∑
g

mg(1−F(Γg −Γh +ηh))+msµs(1−F(Γs −Γh +ηh)),

which implies: ã(Γ′
h −ηh,Γ′) ≥ ã(Γh −ηh,Γ),∀ηh. Next, I establish strict inequality by

noting that the η∗
h solving ã(Γh − η∗

h ,Γ) = Â(x̃h − σ(η∗
h )) and the (η∗

h )
′ solving ã(Γ′

h −
(η∗

h )
′,Γ′) = Â(x′h −σ(η∗

h )
′) are related to each other as (η∗

h )
′ ≥ η∗

h for x̃h = x′h. Moreover, I
can show that (η∗

h )
′ > η∗

h by contradiction. Suppose that (η∗
h )

′ = η∗
h and recall that there

exists a g such that Γ′
h −Γ′

g > Γh −Γg,∀g ∈ {s, ...,G}, for which:

(1−F(Γ′
g −Γ′

h +η
∗
h ))> (1−F(Γg −Γh +η

∗
h )).

As a result, ã(Γ′
h−η∗

h ,Γ′)> ã(Γh−η∗
h ,Γ), which contradicts (η∗

h )
′ = η∗

h . Hence, Hσ
h (x̃1,Γ)−

Hσ
h (x

′
1,Γ′) < 0, meaning there exists at most one equilibrium characterized by threshold

strategies, which concludes Step 1.
Step 2: Next, I show that the system of indifference conditions given by:

Hσ
g (x1,Γ) = 0,∀g ∈ {s, ...,G}

is well approximated by H0
g (x1,Γ) = 0, as σ ↘ 0. Note that limσ↘0 ξ = limσ↘0 ϑ (A,Γ) = 0.
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Moreover, all group-specific signal thresholds x∗g must lie in the σ/2-neighborhood of the
fundamental threshold θ ∗(σ) for the indifference conditions to hold. Following Sákovics
and Steiner (2012) I can show that Hσ

g (x1,Γ) = 0 converges uniformly to H0
g (x1,Γ) when σ

is small. To do so, I use the fact that the differential payoff from demanding conversion,
∆, is Lipschitz continuous to the left and right of Â(θ ).

Step 3: Next, I apply the Belief Constraint. Using the previous results, the signal
thresholds x∗g converge to the fundamental threshold θ ∗ solving:

∫ (θ∗−1)r
κ(θ∗−r)

0
((pB,g − pS,g)τ2 − τ1)dAg(A,Γ∗)

+
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1+(pB,g − pS,g)τ2 − τ1 −

r−κA
r θ −ψ

1−κA

)
dAg(A,Γ∗) = 0,∀g ∈ {s, ...,G}. (26)

Summing over the coin holder groups on both sides, I arrive at Equation (9) using the
Belief Constraint, which crucially depends on the assumption that the pB,gs and pS,gs are
not contingent on the aggregate action of coin holders, to obtain:

∫ 1

(θ∗−1)r
κ(θ∗−r)

(
1−

r−κA
r θ ∗−ψ

1−κA

)
dA+∆pτ2 − τ1 = 0,

where ∑
G
g=s+1 mgAg(A,Γ∗)+msµsAs(A,Γ∗) = A.

It remains to establish the existence of a threshold equilibrium following iterated
elimination of dominated strategies as in Sákovics and Steiner (2012), building on Ap-
pendix Section A.7. The existence of the upper and lower dominance regions assures that
θ ∈ (x∗G− ϵ,x∗ĝ+ ϵ) holds. This concludes the Proof of Proposition 1.

A.10.2 Proof of Proposition 2

I establish the comparative static results summarized in Proposition 2 for fixed seller
acceptance by analyzing Equation (9): dI

d(pS−pB)
=−τ2 < 0, dI

dα
= ∂ ∆p

∂α
τ2 > 0, dI

dβ
= ∂ ∆p

∂β
τ2 < 0,
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dI
dτ1

= −1 < 0, dI
dτ2

= ∆p,

dI
dψ

=
∫ 1

(θ∗−1)r
κ(θ∗−r)

1
1−κA

dA > 0,

dI
dr

= −
∫ 1

(θ∗−1)r
κ(θ∗−r)

κA
r2(1−κA)

θ
∗dA− θ ∗−1

κ

θ ∗

(θ ∗− r)2

(
1−

1− (θ∗−1)
θ∗−r

θ∗

r

1− (θ∗−1)
θ∗−r r

+
ψ

1− (θ∗−1)r
θ∗−r

)
< 0,

dI
dκ

= −
∫ 1

(θ∗−1)r
κ(θ∗−r)

(
A

(1−κA)2

(
1− θ ∗

r
−ψ

))
dA+

(θ ∗−1)r
κ2(θ ∗− r)

(
1−

1− (θ∗−1)
θ∗−r

θ∗

r

1− (θ∗−1)
θ∗−r r

+
ψ

1− (θ∗−1)r
θ∗−r

)
> 0,

dI
dθ ∗ = −

∫ 1

(θ∗−1)r
κ(θ∗−r)

r−κA
r

1−κA
dA− r

κ

1− r
(θ ∗− r)2

(
1−

1− (θ∗−1)
θ∗−r

θ∗

r

1− (θ∗−1)
θ∗−r r

+
ψ

1− (θ∗−1)r
θ∗−r

)
< 0.

By application of the IFT the results in Proposition 2 follow. This concludes the proof.

A.10.3 Corollary 4 and 5

Corollary 4 and 5 offer a formal analysis of the stabilizing and destabilizing effects.

Corollary 4. (Composition Effect) Under the conditions of Proposition 2 and for a given N >mG,
consider am increase in seller acceptance of stablecoins, S(N), or a shift in consumption preference
weights towards stablecoin-native sellers, i.e. a decrease in ωG or a relative increase in the mass of
crypto-enthusiasts, e.g. dmG = −dmG−1 > 0. This decreases the probability of stablecoin runs.

Corollary 5. (Adoption & Fragility) Under the conditions of Proposition 2 and for fixed seller
acceptance decisions, the probability of stablecoin runs increases with the adoption rate if broader
adoption reduces the average relative payment preference for stablecoins, i.e., dθ ∗/dN > 0 if
d∆p/dN > 0, which holds for N ≥ mG.

A.10.4 Proof of Proposition 3

Fix the seller acceptance profiles f B,M, f S,M. The game is solved by backward induction. At
t = 2 consumers enter the consumption stage either as coin holders or as bank depositors
and use the available funds to consume. At t = 1, consumers also enter the period either
as coin holders or as depositors. Depositors do not find it optimal to convert their money
at t = 1, because they found it optimal to hold deposits initially and would otherwise
forgo the positive interest rate. Given that the issuer can always assure a value that is
arbitrarily close to one dollar at t = 2, it is the dominant strategy for active coin holders
not to demand conversion, i.e. a∗1,i = 0,∀i.

Let’s consider the adoption game at t = 0. Given r,θ ↗ 1, consumer i’s problem is:

max
a0,i∈{0,1}

(
a0,i(1− (1− pS,gi)τ2)+ (1− pS,gi)(1+ rD − (1− pB,gi)τ2)

)
,
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where:

pB,g =
αgλ +βg(1−λ ) f S,M

αgλ +βg(1−λ )
, pS,g =

αgλ f B,M +βg(1−λ )

αgλ +βg(1−λ )
.

The adoption results of Proposition 3 follow. This concludes the proof.

A.10.5 Proof of Propositions 6 and 7

Total welfare (W ) comprises consumer welfare (WC), seller welfare (W S) and the issuer’s
monopoly rent (Π):

WC(N, f ) ≡
G

∑
g=ĝ(N, f )+1

mg

(∫
θ∗(N, f )

θ

urun dθ

θ −θ
+
∫

θ

θ∗(N, f )
uno run dθ

θ −θ

)

+
ĝ(N)

∑
g=1

mg(1+ rD − (1− pB,g(N, f ))τ2) (27)

urun
g (N) ≡

(
κ(1− τ1 − (1− pB,g(N, f ))τ2)

+(1−κ)
( r−κ

r θ−ψ

1−κ
− (1− pS,g(N, f ))τ2

) ) (28)

uno run
g (N) ≡ 1− (1− pS,g(N, f ))τ2 (29)

W S(N, f ) ≡ λ
max{0, (uN −δ

B})2

2(δ
B −δ

B)
+ (1−λ )

max{0, (u(1−N)−δ
S})2

2(δ
S −δ

S)
(30)

Π(N, f ) ≡
∫

θ

θ∗(N, f )

N(θ −1)
θ −θ

dθ , (31)

where we used in (27) the fact that the marginal group ĝ(N) is exactly indifferent. Note that
under our focus on an environment with a low per sales margin and a small acceptance
costs, i.e. when scaling down u and cost distributions with some parameter ϕ → 0, the
seller welfare becomes arbitrarily small. Further, abstracting from the issuer profits the
constrained planner maximizes WC.

Take the equilibrium N∗ attaining the highest level of welfare (if multiple fixed-points
exist) and suppose the adoption rate is interior, i.e. N∗ ∈ (∑G

g= j mg,∑G
g= j−1 mg). Using an

envelope-type argument at the interior adoption margin, I evaluate the first derivative at
N∗ by plugging in from the adoption indifference condition (Equation (11)):

dWC(θ ∗;N)

dN

∣∣
N=N∗ =

G

∑
g=ĝ+1

mg
dθ ∗

dN
urun

g (N)−uno run
g (N)

θ −θ

∣∣
N=N∗ + µĝmĝ

dθ ∗

dN

urun
ĝ (N)−uno run

ĝ (N)

θ −θ

∣∣
N=N∗ (32)

+
G

∑
g=ĝ+1

mg

(∫
θ∗(N)

θ

durun
g (N)

dN
dθ

θ −θ
+
∫

θ

θ∗(N)

duno run
g (N)

dN
dθ

θ −θ

)∣∣
N=N∗ +

g=ĝ

∑
0

mg p′B,g(N)τ2
∣∣
N=N∗ .

Note that the first and second summands are negative if dθ ∗/dN > 0, which holds when-
ever the adoption rate is interior (Corollary 5). Moreover, summands three and four are
zero for fixed seller acceptance and negative for endogenous seller acceptance with and
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elastic acceptance margin of type-S sellers, p′B,g(N)< 0, and an inelastic acceptance margin
of type-B sellers, e.g. if δ

B → ∞, which implies that p′S,g(N)→ 0.
As a result, N∗>NSP whenever the adoption rate is interior (this requires that consumers

from more than one group adopt stablecoins and N∗ /∈ {∑
G
g=2 mg, ...,∑G

g=G−1 mg}) and seller
acceptance is fixed (Proposition 6), or Ñ∗ > NSP when the acceptance margin of type-S
sellers is elastic and the acceptance margin of type-B sellers is inelastic (Proposition 7).
Note that for fixed seller acceptance WC does not have a global maximum to the right of N∗.
For endogenous type-S seller acceptance a sufficient condition that allows exclusion of a
global maximum to the right of Ñ∗ is given by d∆p/dN > 0, meaning that the composition
term dominates the acceptance term (Lemma 1).

A.10.6 Proof of Corollary 1

Let the planner impose a small levy ι on the marginal adopter. In the interior region (a
positive mass of the marginal group exists), consumers’ private differential benefit from
adopting stablecoins in the t = 0 adoption game becomes ∆0,ĝ

(
N,θ ∗(N)

)
− ι(N) = 0. We

continue to focus on a consumer welfare criterion. So the planner’s first-order condition
at the constrained optimum NSP is dWC/dN|NSP = 0. To decentralize the planner’s choice,
there must be the same incentive at the private margin so that the externality is fully
internalized, which implies a levy:

ι
∗(N) = −dWC

dN

evaluated at NSP for implementation. Thus, the decentralized cutoff ∆0,ĝ
(
N,θ ∗(N)

)
−

ι∗(N) = 0 holds precisely when the planner’s first-order condition holds.
From Equation (32) in the Proof of Propositions 6 and 7 we can obtain:

dWC

dN
=

∂WC

∂θ ∗
dθ ∗

dN
+ΣG

g=ĝ

 ∂WC

∂ pB,g

d pB,g

dN
+

≈0︷ ︸︸ ︷
∂WC

∂ pS,g

d pS,g

dN

 . (33)

If seller acceptance is fixed, d pB,g/dN = d pS,g/dN = 0, then:

ι
∗(N) = −∂WC

∂θ ∗
dθ ∗

dN

follows. On interior regions with at least two groups of adopters, dθ ∗/dN > 0 under fixed
acceptance, while ∂WC/∂θ ∗ < 0, so ι∗(N∗) > 0.

Instead, with endogenous type-S seller acceptance and δ
B → ∞ we obtain:

ι̃
∗(N) = −∂WC

∂θ ∗
dθ ∗

dN
−ΣG

g=ĝ

(
∂WC

∂ pB,g

d pB,g

dN

)
,
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where d pB,g/dN < 0 and ∂WC/∂ pB,g > 0. The results in Corollary 1 follow.

A.10.7 Proof of Proposition 8

Using Equation (15), the differential expected payoff from selecting x = xL is:

∆π = π(xH)−π(xL) = −
∫

θ (xL)

θ∗(xL)
(θ −1)Ň∗ dθ

θ (xL)−θ (xL)
+
∫

θ

θ∗(0)
(θ −1)N∗ dθ

θ −θ
(34)

= −
∫

θ∗(0)

θ∗(xL)
(θ −1)

Ň∗

θ (xL)−θ (xL)
dθ︸ ︷︷ ︸

< 0, cost of weakly
more runs if x = xH

−
∫

θ (xL)

θ∗(0)
(θ −1)

(
Ň∗

θ (xL)−θ (xL)
− N∗

θ −θ

)
dθ︸ ︷︷ ︸

dispersion/adoption effect
(sign depends on primitives)

+
∫

θ

θ (xL)
(θ −1)

N∗

θ −θ
dθ︸ ︷︷ ︸

> 0, benefit of a higher
upside if x = xH

.

where Ň∗ ≡ Ň∗(xL,θ ∗(xL)) denotes the adoption rate given xL and N∗ is the adoption rate
from the baseline. Note that π > 0, ∀Ň(x,θ ∗(x))> 0 since θ ∗(x) ≤ θh < θ .

Whether or not it is optimal for the issuer to select xL depends on the relative strength of
the three effects in Equation (34). Intuitively, a lower sensitivity of the probability of runs
and of adoption to a change in the riskiness of the investment portfolio are more likely to
incentivize the issuer to select xH . To make this point, I construct an existence result by
showing that ∆π = π(xH)−π(xL) > 0 for xL ↘ 0 in case adoption is locally insensitive to
change in the portfolio riskiness: d

dxL
Ň∗(xL,θ ∗(xL))|xL=0 = 0.

Specifically, the proof establishes an example for x∗ = xH < xSP that arises for xL ↘ 0 if the
adoption rate is locally unaffected by changes in x, which is assured if ∆0,ĝ(N,θ ∗(N)) > 0.
To do so, I take the derivative of (34) with respect to xL and then examine the limiting case
xL ↘ 0. First, note that for xL = 0 π(xH)−π(0) = 0. Moreover:

lim
xL→0

dπ

dxL
= lim

xL→0

∂θ ∗(xL)

∂ ř
dř
dxL

(θ ∗(xL)−1)
Ň∗

θ (xL)−θ (xL)
(35)

− lim
xL→0

dθ (xL)

dxL
(θ (xL)−1)

Ň∗

θ (xL)−θ (xL)

+ lim
xL→0

∫
θ (xL)

θ∗(xL)
(θ −1)

Ň∗( dθ

dxL
− dθ

dxL
)

(θ (xL)−θ (xL))2
,

because Ň∗ is locally unaffected by changes in xL by assumption. Note that the first sum-
mand is negative and the third summand is also negative (because θ ∗(xL)> 1, ∂θ ∗/∂ ř < 0
and dř/dxL > 0). Instead, the second summand is positive. Given that the derivatives
of the run threshold are finite, we have that the overall expression is positive and, thus,
limxL→0 ∆π > 0 if ξ2/ξ1 → 0. To see this, observe that the negative second summand strictly
dominates the positive third summand. By continuity, there exists a ξ > 0 such that the
result in Proposition 8 holds for all ξ2/ξ1 < ξ . This concludes the proof.
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A.10.8 Proof of Proposition 9

This proof comprises three parts and builds on results from the Proof of Proposition 2.
Part (a): So far, I assumed that the issuer does not face costs of operation. Now, consider

a fixed operating cost ξ > 0 that accrues at t = 0 and is deducted from the funds collected:24

π(θ ∗,N∗;ξ ) =
∫

θ

θ∗(N∗;ξ )

(N∗(ξ )−ξ )θ −N∗(ξ )

θ −θ
dθ . (36)

Observe that ξ lowers the issuer’s profits for a given θ ∗ and N∗. Furthermore, profits
decrease in θ ∗ and increase in N∗. Proposition 9(a) establishes that dθ ∗/dξ > 0, meaning
that the reduction in profits gives rise to a destabilizing effect and to lower adoption. This
is because of a lower resilience of the issuer who is insolvent already for a lower level
of aggregate conversion demand. The fixed cost lowers the available resources, thereby
making it harder to meet the payment obligations. Specifically, the issuer cannot meet her
t = 2 payment obligations if N(κ(1−A)+1−κ)> (N−ξ )θ −NκAθ /r. Rearranging gives:

Â(N∗;θ ,ξ ) ≡
N∗−ξ

N∗ θ −1
κ(θ − r)

r < Â(N∗,θ ,0),∀ξ > 0. (37)

Notably, for a given level of ∆p, the described effect is weakened as adoption increases
when the fixed cost is shared by a larger user base (formally, ξ is divided by N∗).

Using the modified critical threshold in Equation (37), I can, for a given N, derive the
modified equilibrium condition as follows:

I(θ ∗;N,ξ ) ≡ ∆pτ2 − τ1 +
∫ 1

N−ξ

N θ∗−1
κ(θ∗−r) r

1−
N−ξ

N r−κA
r θ ∗−ψ

1−κA

dA = 0. (38)

As in the Proof of Proposition 2, I have that dI(θ ∗;N,ξ )/dθ ∗ < 0. Moreover:

dI(θ ∗;N,ξ )
dξ

=
∫ 1

N−ξ

N θ∗−1
κ(θ∗−r) r

θ ∗/N
1−κA

dA+
θ ∗r

Nκ(θ ∗− r)

(
ψ

1−κÂ

)
> 0.

By application of the IFT. This concludes the proof or Part (a). Notably, N∗/dξ < 0, meaning
that the reduction in profits gives rise to a destabilizing effect and to lower adoption.

Part (b): Next, I consider the variant of the model with transaction fee income.25 Let
f ∈ [0,1] denote the fraction of transaction costs that are accounted for as fee income by

24A variable cost has effects that are identical to a reduction in transaction fee income.
25In practice, part or all of the transaction cost may stem from fees earned by other parties, such as by

crypto miners for on-chain transactions or by cryptocurrency exchanges and other intermediaries for off-
chain transactions. However, some stablecoins are affiliated with exchanges (e.g. USD Coin with Coinbase),
meaning that issuers may accrue part of the fees. To account for this institutional feature, I consider a profit
sharing arrangement between the issuer and other parties.
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the issuer. The modified issuer profits are:

π(θ ∗,N∗; f ) =
∫

θ

θ∗(N∗; f )
N∗θ −1+(1− pS) f τ2

θ −θ
dθ , (39)

where 1 − pS is the weighted average over the group-specific probabilities to meet a
consumption good seller who only accepts bank deposit, meaning that coin holders need
to convert to bank deposits at t = 2 and incur the transaction cost τ2. Now, the issuer is
only insolvent for a higher aggregate conversion demand:

Â(θ , f ) ≡ θ −1
(1− f τ1)θ − r

r
κ
> Â(θ ),∀ f > 0. (40)

The additional resources available translate into a higher critical threshold for the pop-
ulation fraction of coin holders demanding conversion, i.e. dÂ(θ , f )/d f > 0 provided
f τ1 is not too large. The extra revenue promotes the issuer’s ability to meet its payment
obligations. The issuer cannot meet its t = 2 payment obligations if N(κ(1−A)+1−κ)>

Nθ −NκA(1− f τ1)θ /r.26 Rearranging gives Â(θ ;N, f ) in Equation (40), which is unique
as long as f τ1 is not too large.

The equilibrium fundamental threshold θ ∗(N∗; f ) is governed by a modified equilib-
rium condition. By application of the IFT it can be shown that dθ ∗/d f < 0 provided f τ1
is not too large. This concludes the proof of Part (b).

Part (c): Lastly, I consider a change in seigniorage income, which I capture as a shift in
the fundamental support in an additive fashion: θ (ψ) = θ +ψ and θ (ψ) = θ +ψ , where
0 ≤ ψ < θℓ−θ . Given that θ ∗ is not affected by changes in ψ , the result in Part (c) follows.

26Observe that I assume that the revenue from the t = 2 transaction fees does not count against the
payment obligation, e.g because it does not accrue in time. This assumption simplifies the analysis.
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B Online Appendix–Generalization of Proposition 5

I start with a partial equilibrium analysis, taking sellers’ acceptance decisions as given.
The objective is to describe the interplay between beliefs about fragility and adoption.
Then I discuss the joint equilibrium of seller acceptance, consumer adoption and run.
Adoption with Runs Under Fixed Acceptance. Recall that for any given N ∈ [0,1], Propo-
sition 1 delivers a unique monotone equilibrium of the t = 1 conversion game, character-
ized by the threshold θ ∗(N). Holding seller acceptance fixed, broadening adoption brings
in less crypto-oriented users (a composition effect) and raises fragility (i.e., θ ∗ increases).

Define the block mass M(k)≡ ∑
G
h=k mh for k ∈ {1, . . . ,G}, with M(1) = ∑

G
h=1 mh = 1, and:

g(N) ≡ max{g : ∆0,g(N,θ ∗(N))< 0}, g(N) ≡ min{g : ∆0,g(N,θ ∗(N))> 0}

with the conventions g(N) = 0 (g(N) = G+ 1) if no group has ∆0,g < 0 (∆0,g > 0).

Definition 2. (Aggregate Best-Response Correspondence) The aggregate adoption best-response
at belief N is the correspondence: B(N) ≡

[
M(g(N)),M(g(N)+ 1)

]
⊆ [0,1].

The lower endpoint M(g(N)) sums the masses of all strictly adopting groups (g ≥ g(N)),
while the upper endpoint M(g(N)+ 1) adds, when present, the indifferent group ĝ(N) =
g(N) + 1 at full adoption. If there is no indifferent group, then g(N) = g(N) + 1 and
B(N) collapses to the singleton {M(g(N))}. Note that on any interval of N where the
pair (g(N),g(N)) is constant, both endpoints M(g(N)) and M(g(N)+ 1) are constant; the
correspondence changes only at finitely many N where either cutoff switches.

For g > ĝ(N) adoption is strictly optimal and for g < ĝ(N) non-adoption. If the marginal
group exists, i.e. if ĝ(N) = s where s solves ∆0,s = 0, its members are indifferent. Let’s fix
the following ex-ante tie-break (all adopt) using the right-continuous selection: µĝ(N)≡ 1
and Γc(N) = M(ĝ(N)) ∈B(N). Then Γc is a piecewise constant function with finitely many
kinks (when ĝ(N) changes). The best-response itself remains the set-valued B(N).

Next, I evaluate incentives at the two extremes. At N = 0, compute θ ∗(0) from the t = 1
game; if ∆0,G (0,θ ∗(0))≤ 0, then even the most crypto-oriented group G does not adopt, so
N∗ = 0. At N = 1, compute θ ∗(1); if ∆0,1 (1,θ ∗(1))≥ 0, then even the least crypto-oriented
group 1 adopts, so N∗ = 1. Recall that mg > 0,∀g ∈ {1, ...,G}. Moreover, from Equation (11)
∆0,g(N,θ ) is strictly increasing in g and strictly decreasing in θ . Based on these properties,
Proposition 11 describes the partial equilibrium for fixed sellers’ acceptance decisions.

Proposition 11. (Equilibrium of the Adoption Game under Fixed Acceptance) Suppose
Proposition 1 holds so that θ ∗(N) is uniquely defined for each N. Then, under fixed acceptance:

1. Corner cases. If ∆0,G(0,θ ∗(0))< 0, then N∗ = 0. If ∆0,1(1,θ ∗(1))≥ 0, then N∗ = 1.
2. Lower bound. If ∆0,G(0,θ ∗(0)) = 0 and ∆0,G−1

(
0,θ ∗(M(G))

)
< 0, then N∗ ∈ [0,mG].

Moreover, if ∆0,G(0,θ ∗(0))> 0 and ∆0,G−1
(
0,θ ∗(M(G))

)
< 0, then N∗ = mG.

3. Uniqueness. Away from the cases in (1.) and (2.), Γc(N) is piecewise constant, right-
continuous and weakly decreasing on [0,1]. Therefore, Γc −N is strictly decreasing and the
fixed point N∗ solving N∗ = Γc(N∗) is unique.
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Away from the boundary cases, Γc(0) > 0 and Γc(1) < 1, so an interior sign change for
Γc(N)−N is guaranteed and the unique fixed point is interior.

The key insight formalized by Proposition 11 is that with fixed seller acceptance de-
cisions, only the composition channel links N to θ ∗(N), yielding a (generically) strictly
decreasing Γc(N) and a unique adoption equilibrium N∗. I next endogenize seller accep-
tance and show how the additional feedback reshapes these relationships.
Joint Equilibrium: Endogenous Acceptance, Adoption, and Runs. In this subsection
I solve for a Perfect Bayesian Equilibrium when sellers’ acceptance decisions are endoge-
nous. Seller acceptance at t = 0 depends only on their beliefs about the aggregate adoption
rate N (formed at the beginning of t = 0), whereas consumer adoption determines the real-
ized N and depends on (i) matching probabilities pB,g(N), pS,g(N) implied by the acceptance
profile f B,M(N), f S,M(N) (see Equations (1), (2) and (3)) and (ii) the run threshold θ ∗(N)
from the t = 1 conversion game (see Proposition 1). Proposition 12 establishes existence.

Proposition 12. (Existence of a PBE) Under the conditions of Proposition 1, B has nonempty,
compact, convex values and a closed graph, with only finitely many N at which the endpoints
change (when ĝ switches). Hence, by Kakutani’s fixed-point theorem, there exists at least one
N∗ ∈ [0,1] such that N∗ ∈ B(N∗). Sellers’ acceptance profile at belief N∗, consumers’ adoption
that implements N∗, and θ ∗(N∗) constitute a Perfect Bayesian Equilibrium.

Proof. I proceed in four steps: (Step 1) sellers’ best responses, (Step 2) induced matching
probabilities and payment-preference statistic ∆p(N), (Step 3) continuation equilibrium
run threshold θ ∗(N), and (Step 4) adoption fixed point N = Γ(N).

Step 1: The seller acceptance shares f B,M(N) and f S,M(N) in Equations (1) and (2)
are continuous and piecewise linear in N. The former is strictly increasing in N for all
δ

B < uN < δ
B and constant, otherwise. Conversely, the latter is strictly decreasing in N for

all δ
S < u(1−N) < δ

S and constant, otherwise. Importantly, seller acceptance decisions
only depend on beliefs about the adoption rate N and not on beliefs about θ ∗.

Step 2: Given a belief N′ about the adoption rate the matching probabilities, f B,M(N′) and
f S,M(N′), for each group of consumers are given by Equation (3), which allows us to com-
pute the weighted average of group-specific matching probabilities ∆p(N′)≡ E[∆pg(N′) |
adopters at N′] as in Proposition 1. On interior regions:

d∆pg(N′)

dN′ = (1−ωg)
d f S,M

dN′ −ωg
d f B,M

dN′ < 0.

Hence, for a fixed composition of stablecoin adopters, the belief about a higher N′ gives rise
to a network effect in that it reduces ∆p(N′), meaning that it increases the average relative
payment preference for stablecoins via sellers’ acceptance decisions. At the same time,
the aggregate ∆p(N) also moves with the composition of adopters. This generates an
opposing effect. Specifically, from Corollary 5, for a fixed seller acceptance, I have that
d∆p/dN > 0 when adoption expands to more marginal, less crypto-oriented groups. In
other words, I have a decrease in the average relative payment preference for stablecoins via
consumer adoption decisions due to a composition effect and an increase due to a network
effect. The overall d∆p/dN is the sum of these forces and can have either sign.
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Step 3: Observe that θ ∗(N) is continuous in N. Using the results from Propositions 1
and 2 I have for the intermediate range that:

dθ ∗

dN
=

∂θ ∗

∂ ∆p
d∆p
dN

=
−τ2

| ∂ I/∂θ |︸ ︷︷ ︸
>0

d∆p
dN︸︷︷︸

≥ 0 if composition effect dominates
< 0 if network effect dominates

≷ 0.

Continuity of f B,M, f S,M and the IFT ensure that θ ∗(N) is continuous (piecewise C1) in N.
Step 4: By construction, B(N) is either a singleton {M(g(N))} (if there is no indifferent

group) or a closed interval
[

M(g(N)), M(g(N)+1)
]

(the marginal group mixes). Because
∆0,g(N,θ ∗(N)) is continuous in N and strictly increasing in g, the cutoff ĝ(N) changes only
at finitely many points of N, and between such points the endpoints of B(N) are constant.
In either case the set is a nonempty, compact, convex subset of S = [0,1].

Because ∆0,g(N,θ ∗(N)) is strictly increasing in g, the pair (g(N),g(N)) is well-defined.
As N varies, these indices can only change when some ∆0,g(N,θ ∗(N)) crosses 0. Between
such "changes points", the pair (g,g) is constant, so B(N) is a fixed singleton/interval. At
a "change" where, say, g increases from k−1 to k (equivalently, g increases from k to k+1),
the adjacent values of B share the common endpoint M(k):

B(left) =
[

M(k), M(k)
]

and B(right) =
[

M(k+1), M(k)
]
,

or vice versa. Thus the correspondence “moves” by sliding intervals that overlap at their
boundary points. Now fix any sequence Nn → N and xn ∈B(Nn) with xn → x. If N is not a
point where a "change" happens, then for all large n, (g(Nn),g(Nn)) is constant and equals
(g(N),g(N)); hence xn ∈B(N) eventually and the limit x also lies inB(N). If N is a "change
point", then along any subsequence the pair (g(Nn),g(Nn)) is eventually constant on either
side and the corresponding sets B(Nn) share a common endpoint with B(N). Therefore
any limit x of xn ∈B(Nn) must lie in B(N). Hence the graph of B is closed.

Taken together, B is upper hemicontinuous and I invoke Kakutani’s fixed-point the-
orem: there exists N∗ ∈ [0,1] with N∗ ∈B(N∗). The acceptance profile at belief N∗, con-
sumers’ adoption that implements N∗ (with marginal mixing if needed), and θ ∗(N∗) satisfy
the PBE requirements on and off the equilibrium path. This concludes the proof.

Whether the joint equilibrium is unique or not depends on two effects. First, a
composition effect (broader adoption brings in more deposit-oriented consumers, raising
fragility) and, second, an acceptance externality (higher expected stablecoin adoption in-
duces more sellers to also accept stablecoins, lowering fragility). Intuitively, the adoption
best-response is monotone in a way that yields a unique fixed point if the composition
effect dominates (formally, d∆p(N; f )/dN ≥ 0 for all selections). When the acceptance
externality dominates locally (formally, d∆p(N; f )/dN < 0 along some selection on an
interval), the best-response can become S-shaped, generating multiple fixed points.
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